1. Consider the problem of homogenization for the two-point boundary value problem

$$
\begin{aligned}
& -\frac{d}{d x}\left(a\left(\frac{x}{\epsilon}\right) \frac{d u^{\epsilon}(x)}{d x}\right)=f(x) \text { for } x \in(0, L), \\
& u^{\epsilon}(0)=u^{\epsilon}(L)=1
\end{aligned}
$$

The coefficient $a(y)$ is smooth, 1 -periodic and satisfies

$$
0<\alpha \leq a(y) \leq \beta
$$

for some positive constants α, β. The function $f(x)$ is also smooth.
(a) Write down the homogenized equation, the formula for the homogenized coefficient and the cell problem.
(b) Solve the cell problem to show that the homogenized coefficient is

$$
\bar{a}=\frac{1}{\int_{0}^{1} a(y)^{-1} d y} .
$$

(c) Show that

$$
\alpha \leq \bar{a} \leq \beta
$$

and that

$$
\bar{a} \leq \int_{0}^{1} a(y) d y
$$

2. Consider the initial value problem

$$
\begin{align*}
\frac{\partial u^{\epsilon}}{\partial t} & =\left(b_{1}(x)+\frac{1}{\epsilon} b_{2}\left(\frac{x}{\epsilon}\right)\right) \frac{\partial u^{\epsilon}}{\partial x}+D \frac{\partial^{2} u^{\epsilon}}{\partial x^{2}} \quad \text { for }(x, t) \in \mathbb{R} \times \mathbb{R}^{+} \tag{1a}\\
u^{\epsilon} & =f(x) \text { for }(x, t) \in \mathbb{R} \times\{0\} \tag{1b}
\end{align*}
$$

where D is a positive constant, the function $b_{2}(y)$ is smooth and 1-periodic in y and $b_{1}(x)$ is smooth in x. Use the method of multiple scales to homogenize the above PDE. In particular:
(a) Show that a necessary condition in order to be able to homogenize (1) is the centering condition

$$
\begin{equation*}
\int_{0}^{1} b_{2}(y) \rho(y) d y=0 \tag{2}
\end{equation*}
$$

where $\rho(y)$ is the unique solution of

$$
-\frac{d}{d y}\left(b_{2}(y) \rho(y)\right)+D \frac{d^{2} \rho(y)}{d y^{2}}=0, \quad \int_{0}^{1} \rho(y) d y=1 .
$$

on $[0,1]$ with periodic boundary conditions.
(b) Assuming that (2) holds, show that the homogenized equation is

$$
\frac{\partial u}{\partial t}=b(x) \frac{\partial u}{\partial x}+\mathcal{K} \frac{\partial^{2} u}{\partial x^{2}}
$$

(c) Show that the formulas for the homogenized coefficients are

$$
b(x)=b_{1}(x)+\int_{0}^{1} \frac{d \chi}{d y}(y) \rho(y) d y
$$

and

$$
\mathcal{K}=\int_{0}^{1}\left(b_{2}(y) \chi(y)+2 D \frac{d \chi}{d y}(y)+D\right) \rho(y) d y
$$

where $\chi(y)$ is the solution of

$$
-b_{2}(y) \frac{d \chi}{d y}-D \frac{d^{2} \chi}{d y^{2}}=b_{2}(y)
$$

on $[0,1]$ with periodic boundary conditions.
3. Let $V(y)$ be a smooth 1-periodic function, D a positive constant and consider the differential operator

$$
\mathcal{L}=-\nabla_{y} V(y) \cdot \nabla_{y}+D \Delta_{y}
$$

on $\mathcal{Y}=[0,1]^{d}$, equipped with periodic boundary conditions. Let \mathcal{L}^{*} denote the L^{2}-adjoint of \mathcal{L}.
(a) Show that the Gibbs distribution

$$
\rho(y)=\frac{1}{Z} e^{-V(y) / D}, \quad Z=\int_{\mathcal{Y}} e^{-V(y) / D} d y
$$

is a solution of the equation

$$
\mathcal{L}^{*} \rho=0, \quad \int_{\mathcal{Y}} \rho(y) d y=1
$$

on \mathcal{Y} with periodic boundary conditions.
(b) Let $b(y)=-\nabla_{y} V(y)$. Show that

$$
\int_{\mathcal{Y}} b(y) \rho(y) d y=0
$$

(c) Show that

$$
\int_{\mathcal{Y}} f(y) \mathcal{L} h(y) \rho(y) d y=\int_{\mathcal{Y}}(\mathcal{L} f(y)) h(y) \rho(y) d y
$$

for all $f, h \in C_{p e r}^{2}(\mathcal{Y})$.
4. Consider the stochastic differential equation (SDE)

$$
d y=-\alpha y d t+\sqrt{2 \lambda} d W
$$

where $W(t)$ is a standard one-dimensional Brownian motion and α, λ are positive constants.
(a) Write down the generator and the forward and backward Kolmogorov equations corresponding to this SDE.
(b) Show that the solution of this SDE is

$$
y(t)=e^{-\alpha t} y(0)+\sqrt{2 \lambda} \int_{0}^{t} e^{-\alpha(t-s)} d W(s) .
$$

(c) Assume that the initial condition is non-random. Show that

$$
\mathbb{E} y(t)=e^{-\alpha t} y(0)
$$

and

$$
\mathbb{E}(y(t)-\mathbb{E} y(t))^{2}=\frac{\lambda}{\alpha}\left(1-e^{-2 \alpha t}\right) .
$$

5. Consider the system of SDEs

$$
\begin{align*}
& \frac{d x}{d t}=\frac{1}{\epsilon}\left(1-y^{2}\right) x \tag{3a}\\
& \frac{d y}{d t}=-\frac{1}{\epsilon^{2}} y+\sqrt{\frac{2}{\epsilon^{2}}} \frac{d W}{d t} \tag{3b}
\end{align*}
$$

where $W(t)$ is a standard one-dimensional Brownian motion. Use the method of multiple scales to obtain the homogenized equation. In particular:
(a) Write down the backward Kolmogorov equation corresponding to (3).
(b) Look for a solution of the Kolmogorov equation in the form of a power series expansion in ϵ and obtain a sequence of equations for the first three terms in the expansion.
(c) Analyze these three equations to obtain the homogenized Kolmogorov equation. Deduce from this that the homogenized SDE is

$$
\frac{d X}{d t}=X+\sqrt{2} X \frac{d W}{d t} .
$$

You may use without proof the formulas

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(-\frac{1}{2} y^{2}\right) d y=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} y^{2} \exp \left(-\frac{1}{2} y^{2}\right) d y=1
$$

and

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} y^{4} \exp \left(-\frac{1}{2} y^{2}\right) d y=3
$$

