
1. Consider the problem of homogenization for the two–point boundary value problem

− d

dx

(
a

(x

ε

) duε(x)

dx

)
= f(x) for x ∈ (0, L),

uε(0) = uε(L) = 1.

The coefficient a(y) is smooth, 1–periodic and satisfies

0 < α ≤ a(y) ≤ β,

for some positive constants α, β. The function f(x) is also smooth.

(a) Write down the homogenized equation, the formula for the homogenized coefficient

and the cell problem.

(b) Solve the cell problem to show that the homogenized coefficient is

a =
1∫ 1

0
a(y)−1 dy

.

(c) Show that

α ≤ a ≤ β

and that

a ≤
∫ 1

0

a(y) dy.

M4A39 Page 2 of 6



2. Consider the initial value problem

∂uε

∂t
=

(
b1 (x) +

1

ε
b2

(x

ε

))
∂uε

∂x
+ D

∂2uε

∂x2
for (x, t) ∈ R× R+, (1a)

uε = f(x) for (x, t) ∈ R× {0}, (1b)

where D is a positive constant, the function b2(y) is smooth and 1–periodic in y and

b1(x) is smooth in x. Use the method of multiple scales to homogenize the above PDE. In

particular:

(a) Show that a necessary condition in order to be able to homogenize (1) is the centering

condition ∫ 1

0

b2(y)ρ(y) dy = 0 (2)

where ρ(y) is the unique solution of

− d

dy
(b2(y)ρ(y)) + D

d2ρ(y)

dy2
= 0,

∫ 1

0

ρ(y) dy = 1.

on [0, 1] with periodic boundary conditions.

(b) Assuming that (2) holds, show that the homogenized equation is

∂u

∂t
= b(x)

∂u

∂x
+K∂2u

∂x2
.

(c) Show that the formulas for the homogenized coefficients are

b(x) = b1(x) +

∫ 1

0

dχ

dy
(y)ρ(y) dy

and

K =

∫ 1

0

(
b2(y)χ(y) + 2D

dχ

dy
(y) + D

)
ρ(y) dy

where χ(y) is the solution of

−b2(y)
dχ

dy
−D

d2χ

dy2
= b2(y)

on [0, 1] with periodic boundary conditions.
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3. Let V (y) be a smooth 1–periodic function, D a positive constant and consider the

differential operator

L = −∇yV (y)•∇y + D∆y

on Y = [0, 1]d, equipped with periodic boundary conditions. Let L∗ denote the L2–adjoint

of L.

(a) Show that the Gibbs distribution

ρ(y) =
1

Z
e−V (y)/D, Z =

∫

Y
e−V (y)/D dy

is a solution of the equation

L∗ρ = 0,

∫

Y
ρ(y) dy = 1.

on Y with periodic boundary conditions.

(b) Let b(y) = −∇yV (y). Show that

∫

Y
b(y)ρ(y) dy = 0.

(c) Show that ∫

Y
f(y)Lh(y)ρ(y) dy =

∫

Y
(Lf(y)) h(y)ρ(y) dy

for all f, h ∈ C2
per(Y).
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4. Consider the stochastic differential equation (SDE)

dy = −αy dt +
√

2λ dW

where W (t) is a standard one-dimensional Brownian motion and α, λ are positive constants.

(a) Write down the generator and the forward and backward Kolmogorov equations

corresponding to this SDE.

(b) Show that the solution of this SDE is

y(t) = e−αty(0) +
√

2λ

∫ t

0

e−α(t−s) dW (s).

(c) Assume that the initial condition is non-random. Show that

Ey(t) = e−αty(0)

and

E
(
y(t)− Ey(t)

)2
=

λ

α

(
1− e−2αt

)
.
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5. Consider the system of SDEs

dx

dt
=

1

ε
(1− y2)x, (3a)

dy

dt
= − 1

ε2
y +

√
2

ε2

dW

dt
, (3b)

where W (t) is a standard one–dimensional Brownian motion. Use the method of multiple

scales to obtain the homogenized equation. In particular:

(a) Write down the backward Kolmogorov equation corresponding to (3).

(b) Look for a solution of the Kolmogorov equation in the form of a power series expansion

in ε and obtain a sequence of equations for the first three terms in the expansion.

(c) Analyze these three equations to obtain the homogenized Kolmogorov equation.

Deduce from this that the homogenized SDE is

dX

dt
= X +

√
2X

dW

dt
.

You may use without proof the formulas

1√
2π

∫ ∞

−∞
exp

(
−1

2
y2

)
dy =

1√
2π

∫ ∞

−∞
y2 exp

(
−1

2
y2

)
dy = 1

and
1√
2π

∫ ∞

−∞
y4 exp

(
−1

2
y2

)
dy = 3
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