- 1. Let $f: X \to X$ be a continuous map of a compact metric space. Let \mathcal{M} denote the space of all Borel probability measures on X.
 - (i) (a) Define the weak-star topology on \mathcal{M} by giving the definition of a converging sequence of measure in \mathcal{M} .
 - (b) Define the *pullback* map $f_*: \mathcal{M} \to \mathcal{M}$ induced by the map f.
 - (c) Show that f_* is continuous in the weak-star topology (you may assume the fact that $\int \varphi d(f_*\mu) = \int \varphi \circ f d\mu$).
 - (ii) Let

$$\mu_n = \frac{1}{n} \sum_{i=0}^{n-1} f_*^i \delta_x.$$

- (a) Say which property of the weak-star topology guarantees that the sequence $\{\mu_n\}$ always has a limit point.
- (b) Show that any limit point μ of the sequence $\{\mu_n\}$ is f-invariant.
- (iii) Give an example of a continuous function on a non-compact set X which admits no invariant measures. Justify your answer.
- (iv) Let $X = \Sigma_2^+$ and $f = \sigma$ the shift map. Give an example of a point x for which the corresponding sequence μ_n has more than one limit point.

- 2. Let $f: I \to I$ be an interval map and μ a probability measure.
 - (i) (a) Say what it means for μ to be invariant, ergodic, absolutely continuous with respect to Lebesgue measure.
 - (b) State Birkhoff's ergodic theorem.
 - (ii) (a) Let $k \in \mathbb{N}$, $k \ge 2$. Say what it means for a number x to be normal in base k.
 - (b) Apply Birkhoff's ergodic theorem to show that Lebesgue almost every real number is normal in every base k.
 - (iii) (a) Say what is means for an invariant measure to be mixing.
 - (b) Given two functions $\varphi, \psi: I \to \mathbb{R}$, define the correlation function $\mathcal{C}_n(\varphi, \psi)$.
 - (c) Explain how the decay of the correlation function is related to the notion of mixing.
 - (d) Show that mixing implies ergodicity
 - (e) Give an example of a map with an invariabnt probability measure which is absolutely continuous with respect to Lebesgue and which is ergodic but not mixing. Justify your answer.

- 3. Let $\Sigma_2^+ = \{0,1\}^{\mathbb{N}}$ denote the space of all infinite sequences of 0 and 1 with the standard metric.
 - (i) (a) Define the cylinder sets $I_{a_1...a_n}$.
 - (b) For $p \in (0,1)$ define the Markov measure μ_p on cylinder sets.
 - (ii) Show that μ_p is invariant under the shift map σ .
 - (iii) Show that there exists a family $\{A_p\}_{p\in(0,1)}$ of disjoint sets in Σ_2^+ such that for each $p\in(0,1)$

$$\mu_p(\mathcal{A}_p) = 1.$$

You may assume if necessary that μ_p is ergodic for every $p \in (0,1)$.

- 4. Let $f: I \to I$ be an interval map.
 - (i) (a) Define the *Markov* property of f.
 - (b) Define the notion of cylinder sets for a Markov map f.
 - (c) Define the bounded distortion property of a Markov map.
 - (ii) Suppose that f is a Markov map with the bounded distortion property and assume that the size of cylinder sets of order n tends to 0 as n tends to infinity. Show that f is ergodic with respect to Lebesgue measure.
 - (iii) Give an example of a Markov map for which some cylinder sets of order n do not tend to 0 as n tends to infinity.

- 5. (i) (a) Say what it means for f to admit an induced Markov map F.
 - (b) Say what it means for F to have integrable return times.
 - (c) Suppose that ν is an F-invariant probability measure. Define an f-invariant probability measure $\widehat{\mu}$ in terms of ν .
 - (d) Show that the integrability of the return times implies that $\widehat{\mu}$ can be normalized to a probability measure and state this normalization explicitly.
 - (e) Suppose ν is absolutely continuous with respect to Lebesgue measure. Show that μ is also absolutely continuous with respect to Lebesgue measure.
 - (ii) Let I=(0,1) and let $\mathcal{P}=\{I_0,I_1,I_2\}$ be a partition with $I_0=(0,1/4)$, $I_1=(1/4,1/2)$ and $I_2=(1/2,1)$. Let $f:I\to I$ be a piecewise affine (constant derivative on each partition element) map, mapping I_0 to $(0,1/2)=I_0\cup I_1$ bijectively and I_1 and I_2 to I bijectively. Show that f admits and induced Markov map with integrable return times by inducing on $\Delta=I_0$.