Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M4A36

Probabilistic Methods in Dynamics

Date: Friday 26th May 2006

Time: 10 am – 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- 1. Let $D \subset \mathbb{R}^2$ be the closed unit disc and let $f: D \to D$ be a continuous function.
 - (a) Give the definition of the omega-limit $\omega(x_0)$ of a point x_0 .
 - (b) Show that $\omega(x_0)$ is
 - (i) nonempty,
 - (ii) invariant,
 - (iii) closed.
 - (c) (i) Write what it means for f to be a contraction.
 - (ii) State, without details, the steps of the argument required to show that a contraction has a unique fixed point.
 - (d) State without proof the Bendixson-Poincaré theorem.
- 2. (a) Let $f: X \to X$ be a map on a metric space X. Let $x_0 \in X$. Write what it means to say that the orbit of x_0 is
 - (i) periodic,
 - (ii) dense.
 - (b) Prove that a for a rigid circle rotation
 - (i) all orbits are periodic if and only if ρ is rational,
 - (ii) all orbits are dense if and only if ρ is irrational.
- 3. Let $f, g: \mathbb{S}^1 \to \mathbb{S}^1$ be circle homeomorphisms.
 - (a) Write what is means for f, g to be
 - (i) topologically *semi-conjugate*,
 - (ii) topologically *conjugate*.
 - (b) Define the rotation number $\rho(f)$.
 - (c) Suppose that $\rho(f)$ is irrational. What can you say about the topological structure of the dynamics of f? Cite any standard results which you need.
 - (d) Suppose that $\rho(f) = \rho(g)$ is irrational. What additional conditions guarantee that they are topologically conjugate? Cite any standard results that you need.
 - (e) Construct an example of two circle homeomorphisms f and g with $\rho(f) = \rho(g)$ irrational but which are not topologically conjugate.

- 4. (a) Let \mathcal{F} be a family of analytic maps from a domain \mathcal{D} to the Riemann sphere $\overline{\mathbb{C}}$.
 - (i) Write what it means for the family \mathcal{F} to be a *normal family*.
 - (ii) Show that if \mathcal{F} is uniformly bounded on each compact set $K \subset \mathcal{D}$ then it is normal. Cite any theorems that you use.
 - (iii) State Montel's theorem on normal families.
 - (b) Let $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ be a rational map. Define
 - (i) the Fatou set F_c ,
 - (ii) the Julia set J_c .
 - (c) Let $f_c : \mathbb{C} \to \mathbb{C}$ be the family of polynomial maps $f_c(z) = z^2 + c$.
 - (i) Define the Mandelbrot set \mathcal{M} .
 - (ii) Give an example of Julia set, for a particular parameter value, to show that $\mathcal{M} \neq \emptyset$.

- 5. (a) Define a Borel probability measure μ on [1,0].
 - (b) Write what it means for μ to be invariant.
 - (c) Write what it means for μ to be ergodic.
 - (d) State Birkhoff's Ergodic Theorem.
 - (e) Every real number in [0,1] can be written in base k for $k \in \mathbb{N}$, $k \ge 2$, by writing

$$x = \sum_{n=1}^{\infty} \frac{a_n}{k^n}$$

for some coefficients $a_n \in \{0, \ldots, k-1\}$.

A number x is normal in base k if the asymptotic frequency of the occurrence of each digit a_0, \ldots, a_{k-1} in the expansion in base k of x is exactly 1/k. Apply Birkhoff's ergodic theorem to prove that almost all real numbers are normal in every integer base. Cite any standard results that you use.