Imperial College London

UNIVERSITY OF LONDON
BSc and MSci EXAMINATIONS (MATHEMATICS)
and MSc EXAMINATIONS
May-June 2005

This paper is also taken for the relevant examination for the Associateship.

M4A35/MSA5 Bifurcation Theory

Date: Wednesday, 25th May 2005 Time: $2 \mathrm{pm}-4 \mathrm{pm}$

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Suppose $\mathbf{F}: \mathbb{R}^{N} \times \mathbb{R} \mapsto \mathbb{R}^{N}$ is a smooth function and $\left(\mathrm{x}^{\star}, \lambda^{\star}\right) \in \mathbb{R}^{N} \times \mathbb{R}$ satisfies

$$
\mathbf{F}\left(\mathrm{x}^{\star}, \lambda^{\star}\right)=\mathbf{0} .
$$

Let $\mathrm{J}\left(\mathbf{x}^{\star}, \lambda^{\star}\right) \in \mathbb{R}^{N \times N}$ denote the Jacobian matrix of \mathbf{F} at $\left(\mathbf{x}^{\star}, \lambda^{\star}\right)$ and $\mathbf{F}_{\lambda}\left(\mathbf{x}^{\star}, \lambda^{\star}\right) \in \mathbb{R}^{N}$ denote the partial derivative of \mathbf{F} with respect to λ at $\left(\mathbf{x}^{\star}, \lambda^{\star}\right)$.
(a) If $J\left(x^{\star}, \lambda^{\star}\right)$ is non-singular, state carefully the conclusion of the Implicit Function Theorem applied to \mathbf{F} at $\left(\mathbf{x}^{\star}, \lambda^{\star}\right)$. Explain clearly how to use continuation with respect to λ to compute any zero of \mathbf{F} near ($\mathbf{x}^{\star}, \lambda^{\star}$). Your explanation should include the Newton iteration employed and also how $\mathbf{F}_{\lambda}\left(\mathbf{x}^{\star}, \lambda^{\star}\right)$ is used to obtain an accurate starting value for it.
(b) If

$$
\left[\mathrm{J}\left(\mathbf{x}^{\star}, \lambda^{\star}\right) \mathbf{F}_{\lambda}\left(\mathrm{x}^{\star}, \lambda^{\star}\right)\right] \in \mathbb{R}^{N \times(N+1)}
$$

has rank N, explain clearly how to use generalised continuation to compute zeroes of \mathbf{F} near $\left(\mathbf{x}^{\star}, \lambda^{\star}\right)$. Your explanation should include how to choose $\left(\mathbf{y}^{\star}, \mu^{\star}\right) \in \mathbb{R}^{N} \times \mathbb{R}$ so that the conditions of the Implicit Function Theorem apply to the function $\mathrm{G}:\left(\mathbb{R}^{N} \times \mathbb{R}\right) \times \mathbb{R} \mapsto \mathbb{R}^{N} \times \mathbb{R}$ defined by

$$
\mathbf{G}(\mathbf{x}, \lambda ; \varepsilon) \equiv\left\{\begin{array}{c}
\mathbf{F}(\mathbf{x}, \lambda) \\
\mathbf{y}^{\star} \cdot\left[\mathbf{x}-\mathbf{x}^{\star}\right]+\mu^{\star}\left[\lambda-\lambda^{\star}\right]-\varepsilon
\end{array}\right\}
$$

at the point $\left(\mathbf{x}^{\star}, \lambda^{\star} ; 0\right)$, and what the conclusions of this theorem are. If $\left(\mathbf{y}^{\star}, \mu^{\star}\right) \in$ $\mathbb{R}^{N} \times \mathbb{R}$ is normalised so that

$$
\mathbf{y}^{\star} \cdot \mathbf{y}^{\star}+\left[\mu^{\star}\right]^{2}=1,
$$

you should also explain how to obtain an accurate starting value for Newton's method applied to

$$
\mathbf{G}(\mathbf{x}, \lambda ; \varepsilon)=\mathbf{0}
$$

for fixed small $|\varepsilon| \neq 0$.
2. (a) Suppose that $\mathrm{A} \in \mathbb{R}^{N \times N}$ has eigenvalues with strictly negative real part, and also assume that A has N linearly independent eigenvectors. Describe carefully how to define a special inner-product $\langle., .\rangle_{\star}$ on \mathbb{R}^{N} so that

$$
\langle\mathbf{A} \mathbf{x}, \mathbf{x}\rangle_{\star} \leq \lambda_{\max }\langle\mathbf{x}, \mathbf{x}\rangle_{\star} \quad \forall \mathbf{x} \in \mathbb{R}^{N} ;
$$

where $\lambda_{\max }<0$ is defined by

$$
\lambda_{\max } \equiv \max \{\operatorname{Re}(\lambda): \lambda \text { an eigenvalue of } \mathrm{A}\}
$$

(b) Let $\mathbf{x}^{\star} \in \mathbb{R}^{N}$ be a stationary solution for the smooth autonomous system

$$
(\dagger) \quad \dot{\mathbf{x}}(t)=\mathbf{F}(\mathbf{x}(t)) \quad \mathbf{F}: \mathbb{R}^{N} \mapsto \mathbb{R}^{N}
$$

i.e. $\mathbf{F}\left(\mathbf{x}^{\star}\right)=\mathbf{0}$. Assume that $\mathrm{J}\left(\mathrm{x}^{\star}\right)$, where $\mathrm{J}\left(\mathrm{x}^{\star}\right)$ is the Jacobian matrix of \mathbf{F} at \mathbf{x}^{\star}, has eigenvalues with strictly negative real part and N linearly independent eigenvectors. Use the special vector norm in (a) to prove that any solution $\mathbf{x}(t)$ of (\dagger), with starting value $\mathbf{x}(0)$ sufficiently close to \mathbf{x}^{\star}, will satisfy

$$
\lim _{t \rightarrow \infty} \mathbf{x}(t)=\mathbf{x}^{\star}
$$

3. Consider the differential equation

$$
(\dagger) \quad \dot{\mathbf{u}}(t)-\mathbf{A} \mathbf{u}(t)=\mathbf{f}(t),
$$

where $\mathrm{A} \in \mathbb{R}^{N \times N}, \mathbf{f}: \mathbb{R} \mapsto \mathbb{R}^{N}$ is a continuous function, and $\mathbf{u}: \mathbb{R} \mapsto \mathbb{R}^{N}$ is our unknown function. State the variation-of-constants formula expressing $\mathbf{u}(t)$ (the solution of (\dagger) at time t) in terms of the initial value $\mathbf{u}(0)$, the matrix exponential of A , and the right-hand side \mathbf{f}.
(a) Suppose the eigenvalues of A have strictly negative real part, i.e.

$$
0>-\alpha>\max \{\operatorname{Re}(\lambda): \lambda \text { an eigenvalue of } A\}
$$

for some $\alpha>0$. Given that for each vector norm (and induced matrix norm) there exists a constant $C \geq 1$ such that

$$
\left\|\mathrm{e}^{\mathrm{A} t}\right\| \leq C \mathrm{e}^{-\alpha t} \quad \forall t \geq 0
$$

and also assuming that f satisfies the bound

$$
\|\mathbf{f}(t)\| \leq \mathrm{e}^{-2 \alpha t} \quad \forall t \geq 0
$$

deduce that the solution of (\dagger) with initial condition $\mathbf{u}(0)=\boldsymbol{\xi}$ satisfies

$$
\|\mathbf{u}(t)\| \leq C \mathrm{e}^{-\alpha t}\left\{\|\boldsymbol{\xi}\|+\frac{\mathrm{e}^{-\alpha t}}{\alpha}\right\} \quad \forall t \geq 0
$$

(b) Suppose the eigenvalues of A have strictly positive real part, i.e.

$$
0<\beta<\min \{\operatorname{Re}(\lambda): \lambda \text { an eigenvalue of } \mathrm{A}\}
$$

for some $\beta>0$. Given that for each vector norm (and induced matrix norm) there exists a constant $C \geq 1$ such that

$$
\left\|\mathrm{e}^{-\mathrm{A} t}\right\| \leq C \mathrm{e}^{-\beta t} \quad \forall t \geq 0
$$

and also assuming that \mathbf{f} satisfies the bound

$$
\|\mathbf{f}(t)\| \leq \mathrm{e}^{-\gamma t} \quad \forall t \geq 0
$$

for some $\gamma>0$; explain carefully why there is exactly one initial condition $\mathbf{u}(0)$ so that the solution of (\dagger) satisfies

$$
\lim _{t \rightarrow \infty} \mathbf{u}(t)=\mathbf{0}
$$

Deduce that this unique solution satisfies the bound

$$
\|\mathbf{u}(t)\| \leq C \frac{\mathrm{e}^{-\gamma t}}{\gamma} \quad \forall t \geq 0
$$

4. (a) Suppose $\mathrm{A}(\lambda)$ is an $N \times N$ matrix depending smoothly on a scalar parameter λ. We assume that $\mathrm{A}\left(\lambda^{\star}\right)$ is singular, with one-dimensional right and left null-spaces $\left\{\varphi^{\star}\right\}$ and $\left\{\boldsymbol{\psi}^{\star}\right\}$ respectively, and that this zero eigenvalue of $\mathrm{A}\left(\lambda^{\star}\right)$ is simple, i.e. we can choose the normalisation

$$
\varphi^{\star} \cdot \varphi^{\star}=1 \quad \text { and } \quad \boldsymbol{\psi}^{\star} \cdot \varphi^{\star}=1
$$

Explain why the Implicit Function Theorem may be applied at $\lambda=\lambda^{\star}$ to the augmented nonlinear system

$$
\begin{align*}
\mathrm{A}(\lambda) \mathbf{x}-\mu \mathbf{x} & =\mathbf{0} \\
\boldsymbol{\psi}^{\star} \cdot \mathbf{x}-1 & =0
\end{align*}
$$

for an eigenvalue μ and normalised eigenvector \mathbf{x} of $\mathrm{A}(\lambda)$. If we denote this eigenvalue by $\mu^{\star}(\lambda)$, so that $\mu^{\star}\left(\lambda^{\star}\right)=0$, prove that

$$
\frac{\mathrm{d} \mu^{\star}}{\mathrm{d} \lambda}\left(\lambda^{\star}\right)=\boldsymbol{\psi}^{\star} \cdot \mathrm{A}^{\prime}\left(\lambda^{\star}\right) \boldsymbol{\varphi}^{\star} .
$$

(b) Suppose $\mathbf{F}: \mathbb{R}^{N} \times \mathbb{R} \mapsto \mathbb{R}^{N}$ is a smooth function and $\mathrm{J}: \mathbb{R}^{N} \times \mathbb{R} \mapsto \mathbb{R}^{N \times N}$ denotes its Jacobian matrix. Suppose \mathbf{F} has the additional property that

$$
\mathbf{F}(\mathbf{0}, \lambda)=\mathbf{0} \quad \forall \lambda \in \mathbb{R},
$$

and let $\lambda^{\star} \in \mathbb{R}$ satisfy

- $\operatorname{rank}\left\{\mathrm{J}\left(\mathbf{0}, \lambda^{\star}\right)\right\}=N-1$, with $\left\{\boldsymbol{\varphi}^{\star}\right\}$ denoting the null-space of $\mathrm{J}\left(\mathbf{0}, \lambda^{\star}\right)$ and $\left\{\boldsymbol{\psi}^{\star}\right\}$ denoting the null-space of $\mathrm{J}\left(\mathbf{0}, \lambda^{\star}\right)^{T}$;
- $\boldsymbol{\psi}^{\star} \cdot J_{\lambda}\left(\mathbf{0}, \lambda^{\star}\right) \boldsymbol{\varphi}^{\star} \neq 0$, where $J_{\lambda}\left(\mathbf{0}, \lambda^{\star}\right) \in \mathbb{R}^{N \times N}$ is the derivative of $\mathrm{J}(\mathbf{0}, \lambda)$ with respect to λ evaluated at λ^{\star}.
Explain carefully how the Implicit Function Theorem can be applied to the function $\mathbf{G}:\left(\left\{\varphi^{\star}\right\}^{\perp} \times \mathbb{R}\right) \times \mathbb{R} \mapsto \mathbb{R}^{N}$, defined by

$$
\mathbf{G}(\mathbf{w}, \lambda ; \varepsilon) \equiv\left\{\begin{array}{rl}
\frac{1}{\varepsilon} \mathbf{F}\left(\varepsilon\left[\boldsymbol{\varphi}^{\star}+\mathbf{w}\right], \lambda\right) & \varepsilon \neq 0 \\
\mathrm{~J}(\mathbf{0}, \lambda)\left[\boldsymbol{\varphi}^{\star}+\mathbf{w}\right] & \varepsilon=0
\end{array},\right.
$$

in order to determine the solutions of

$$
\mathbf{F}(\mathbf{x}, \lambda)=\mathbf{0}
$$

in a neighbourhood of $\left(0, \lambda^{\star}\right)$.
5. Let $\mathbf{F}: \mathbb{R}^{N} \mapsto \mathbb{R}^{N}$ be a smooth function, with $\mathrm{J}: \mathbb{R}^{N} \mapsto \mathbb{R}^{N \times N}$ denoting its Jacobian matrix. Define carefully what is meant by the function $\mathbf{u}^{\star}: \mathbb{R} \mapsto \mathbb{R}^{N}$ being a periodic orbit of minimal period $T^{\star}>0$ for the autonomous differential equation

$$
\dot{\mathbf{u}}(t)=\mathbf{F}(\mathbf{u}(t))
$$

What is the problem of phase indeterminacy, and what non-trivial solution of period T^{\star} must the linear differential equation

$$
\dot{\mathbf{u}}(t)-\mathrm{J}\left(\mathbf{u}^{\star}(t)\right) \mathbf{u}(t)=\mathbf{0}
$$

possess?
Describe how, by a change of independent variable, an equation for an unknown periodic orbit and its unknown period may be constructed over the fixed interval $[0,2 \pi]$. Also explain carefully how the phase may be fixed by means of an extra scalar equation utilising a known nearby 2π-periodic function $\mathbf{v}^{0}: \mathbb{R} \mapsto \mathbb{R}^{N}$.

