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1. Suppose F : RN × R 7→ RN is a smooth function and (x?, λ?) ∈ RN × R satisfies

F(x?, λ?) = 0.

Let J(x?, λ?) ∈ RN×N denote the Jacobian matrix of F at (x?, λ?) and Fλ(x?, λ?) ∈ RN

denote the partial derivative of F with respect to λ at (x?, λ?).

(a) If J(x?, λ?) is non-singular, state carefully the conclusion of the Implicit Function

Theorem applied to F at (x?, λ?). Explain clearly how to use continuation with

respect to λ to compute any zero of F near (x?, λ?). Your explanation should include

the Newton iteration employed and also how Fλ(x
?, λ?) is used to obtain an accurate

starting value for it.

(b) If

[J(x?, λ?) Fλ(x
?, λ?)] ∈ RN×(N+1)

has rank N , explain clearly how to use generalised continuation to compute zeroes of

F near (x?, λ?). Your explanation should include how to choose (y?, μ?) ∈ RN × R
so that the conditions of the Implicit Function Theorem apply to the function

G : (RN × R)× R 7→ RN × R defined by

G(x, λ; ε) ≡

{
F(x, λ)

y? ∙ [x− x?] + μ?[λ− λ?]− ε

}

at the point (x?, λ?; 0), and what the conclusions of this theorem are. If (y?, μ?) ∈
RN × R is normalised so that

y? ∙ y? + [μ?]2 = 1,

you should also explain how to obtain an accurate starting value for Newton’s method

applied to

G(x, λ; ε) = 0

for fixed small |ε| 6= 0.
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2. (a) Suppose that A ∈ RN×N has eigenvalues with strictly negative real part, and also
assume that A has N linearly independent eigenvectors. Describe carefully how to

define a special inner–product 〈 . , . 〉? on RN so that

〈Ax,x〉? ≤ λmax 〈x,x〉? ∀x ∈ RN ;

where λmax < 0 is defined by

λmax ≡ max {Re(λ) : λ an eigenvalue of A} .

(b) Let x? ∈ RN be a stationary solution for the smooth autonomous system

(†) ẋ(t) = F(x(t)) F : RN 7→ RN ,

i.e. F(x?) = 0. Assume that J(x?), where J(x?) is the Jacobian matrix of F at x?, has

eigenvalues with strictly negative real part and N linearly independent eigenvectors.

Use the special vector norm in (a) to prove that any solution x(t) of (†), with starting
value x(0) sufficiently close to x?, will satisfy

lim
t→∞
x(t) = x?.
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3. Consider the differential equation

(†) u̇(t)− Au(t) = f(t),

where A ∈ RN×N , f : R 7→ RN is a continuous function, and u : R 7→ RN is our unknown
function. State the variation–of–constants formula expressing u(t) (the solution of (†) at
time t) in terms of the initial value u(0), the matrix exponential of A, and the right–hand

side f .

(a) Suppose the eigenvalues of A have strictly negative real part, i.e.

0 > −α > max {Re(λ) : λ an eigenvalue of A}

for some α > 0. Given that for each vector norm (and induced matrix norm) there

exists a constant C ≥ 1 such that

‖eAt‖ ≤ Ce−αt ∀t ≥ 0

and also assuming that f satisfies the bound

‖f(t)‖ ≤ e−2αt ∀t ≥ 0;

deduce that the solution of (†) with initial condition u(0) = ξ satisfies

‖u(t)‖ ≤ Ce−αt
{

‖ξ‖+
e−αt

α

}

∀t ≥ 0.

(b) Suppose the eigenvalues of A have strictly positive real part, i.e.

0 < β < min {Re(λ) : λ an eigenvalue of A}

for some β > 0. Given that for each vector norm (and induced matrix norm) there

exists a constant C ≥ 1 such that

‖e−At‖ ≤ Ce−βt ∀t ≥ 0

and also assuming that f satisfies the bound

‖f(t)‖ ≤ e−γt ∀t ≥ 0

for some γ > 0; explain carefully why there is exactly one initial condition u(0) so

that the solution of (†) satisfies

lim
t→∞
u(t) = 0.

Deduce that this unique solution satisfies the bound

‖u(t)‖ ≤ C
e−γt

γ
∀t ≥ 0.
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4. (a) Suppose A(λ) is an N ×N matrix depending smoothly on a scalar parameter λ. We
assume that A(λ?) is singular, with one-dimensional right and left null-spaces {ϕ?}
and {ψ?} respectively, and that this zero eigenvalue of A(λ?) is simple, i.e. we can
choose the normalisation

ϕ? ∙ϕ? = 1 and ψ? ∙ϕ? = 1.

Explain why the Implicit Function Theorem may be applied at λ = λ? to the

augmented nonlinear system

(†)
A(λ)x− μx = 0

ψ? ∙ x− 1 = 0

for an eigenvalue μ and normalised eigenvector x of A(λ). If we denote this eigenvalue

by μ?(λ), so that μ?(λ?) = 0, prove that

dμ?

dλ
(λ?) = ψ? ∙ A′(λ?)ϕ?.

(b) Suppose F : RN × R 7→ RN is a smooth function and J : RN × R 7→ RN×N denotes
its Jacobian matrix. Suppose F has the additional property that

F(0, λ) = 0 ∀λ ∈ R,

and let λ? ∈ R satisfy

• rank {J(0, λ?)} = N − 1, with {ϕ?} denoting the null-space of J(0, λ?) and {ψ?}
denoting the null-space of J(0, λ?)T ;

• ψ? ∙ Jλ(0, λ?)ϕ? 6= 0, where Jλ(0, λ?) ∈ RN×N is the derivative of J(0, λ) with
respect to λ evaluated at λ?.

Explain carefully how the Implicit Function Theorem can be applied to the function

G : ({ϕ?}⊥ × R)× R 7→ RN , defined by

G(w, λ; ε) ≡






1

ε
F(ε[ϕ? +w], λ) ε 6= 0

J(0, λ)[ϕ? +w] ε = 0
,

in order to determine the solutions of

F(x, λ) = 0

in a neighbourhood of (0, λ?).
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5. Let F : RN 7→ RN be a smooth function, with J : RN 7→ RN×N denoting its Jacobian
matrix. Define carefully what is meant by the function u? : R 7→ RN being a periodic orbit
of minimal period T ? > 0 for the autonomous differential equation

u̇(t) = F(u(t)).

What is the problem of phase indeterminacy, and what non-trivial solution of period T ?

must the linear differential equation

u̇(t)− J(u?(t))u(t) = 0

possess?

Describe how, by a change of independent variable, an equation for an unknown periodic

orbit and its unknown period may be constructed over the fixed interval [0, 2π]. Also explain

carefully how the phase may be fixed by means of an extra scalar equation utilising a known

nearby 2π-periodic function v0 : R 7→ RN .
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