1. For a Lagrangian $L: T G \mapsto \mathbb{R}$ which is left-invariant under the action of a group G, one defines Hamilton's variational principle on a family of time-dependent curves in G by

$$
\delta S=\delta \int_{a}^{b} L(g(t), \dot{g}(t)) d t=0
$$

for variations $\delta g \in T_{g} G$ that vanish at the endpoints in time. By left-invariance of L, this Hamilton's principle is equivalent to the reduced variational principle

$$
\delta S_{\mathrm{red}}=\delta \int_{a}^{b} l(\xi) d t=0
$$

with $L(g, \dot{g})=L\left(e, g^{-1} \dot{g}\right)=l(\xi)$ where $\xi=g^{-1} \dot{g} \in T_{e} G \simeq \mathfrak{g}$ is an element of the Lie algebra \mathfrak{g} of the group G and $\delta \xi$ also vanishes at the endpoints in time.
(a) Compute the variation $\delta \xi=\delta\left(g^{-1} \dot{g}\right)$ that is inherited from the variation $\delta g \in T_{g} G$.
(b) Derive the Euler-Poincaré equation from the reduced variational principle $\delta S_{\text {red }}=0$ by using the formula for $\delta \xi$ and integrating by parts.
(c) Use the Legendre transformation to obtain the corresponding Hamiltonian equation in terms of the Lie-Poisson bracket.
2. Let the vector $\Omega(t)=\left(\Omega_{1}, \Omega_{2}, \Omega_{3}\right) \in \mathbb{R}^{3}$ denote the body angular velocity of a heavy top. Let $\boldsymbol{\Omega}(t)=\left(R^{-1}(t) \dot{R}(t)\right)^{\wedge}$ denote the hat map ${ }^{\wedge}: \mathbb{R}^{3} \mapsto \mathfrak{s o}(3)$ where $R(t) \in S O(3)$ is a 3×3 special orthogonal matrix. The other top parameters are
$-\mathbb{I}=\operatorname{diag}\left(I_{1}, I_{2}, I_{3}\right)$ is the constant moment of inertia tensor, diagonalized in the body principal axes.

- $\boldsymbol{\Gamma}(t)=R^{-1}(t) \hat{\mathbf{z}}$ represents the motion of the unit vector along the vertical axis, as seen from the body.
- χ is the constant vector in the body from the point of support to the body's center of mass.
- m is the total mass of the body and g is the constant acceleration of gravity.
(a) Compute the vector equation of motion for the auxiliary variable $\boldsymbol{\Gamma}(t)$ from its definition.
(b) Derive the Euler-Poincaré equations for the motion of a heavy top from the following reduced action

$$
\delta S_{\mathrm{red}}=0, \quad \text { with } \quad S_{\mathrm{red}}=\int_{a}^{b} l(\boldsymbol{\Omega}, \boldsymbol{\Gamma}) d t=\int_{a}^{b} \frac{1}{2} \boldsymbol{\Omega} \cdot \mathbb{I} \boldsymbol{\Omega}-m g \boldsymbol{\chi} \cdot \boldsymbol{\Gamma} d t
$$

where variations of Ω and Γ are restricted to be of the form

$$
\delta \boldsymbol{\Omega}=\dot{\boldsymbol{\Sigma}}+\boldsymbol{\Omega} \times \boldsymbol{\Sigma} \quad \text { and } \quad \delta \boldsymbol{\Gamma}=\boldsymbol{\Gamma} \times \boldsymbol{\Sigma}
$$

arising via the hat map from variations of the definitions $\Omega=\left(R^{-1} \dot{R}\right)^{\wedge}$ and $\boldsymbol{\Gamma}=R^{-1}(t) \hat{\mathbf{z}}$ in which $\boldsymbol{\Sigma}(t)=\left(R^{-1} \delta R\right)^{\wedge}$ is a curve in \mathbb{R}^{3} that vanishes at the endpoints in time.
(c) Write the formula for the Legendre transformation of a Lagrangian $l(\boldsymbol{\Omega}, \boldsymbol{\Gamma}): \mathfrak{s o}(3) \times$ $\mathbb{R}^{3} \rightarrow \mathbb{R}$ to the corresponding Hamiltonian $h(\boldsymbol{\Pi}, \boldsymbol{\Gamma}): \mathfrak{s o}(3)^{*} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$, with $\boldsymbol{\Pi}$ defined by $\boldsymbol{\Pi}=\partial l / \partial \boldsymbol{\Omega}$. Then differentiate the Hamiltonian and determine its partial derivatives $\partial h / \partial \boldsymbol{\Pi}$ and $\partial h / \partial \boldsymbol{\Gamma}$.
(d) Write the Euler-Poincaré equation for $\partial l / \partial \boldsymbol{\Omega}$ and the auxiliary equation for $\boldsymbol{\Gamma}$ in terms of the angular momentum variable $\Pi=\partial l / \partial \boldsymbol{\Omega}$ and the partial derivatives of the Hamiltonian $\partial h / \partial \boldsymbol{\Pi}$ and $\partial h / \partial \boldsymbol{\Gamma}$.
(e) Recover the Lie-Poisson bracket for the heavy top expressed in terms of vectors in $\Pi, \Gamma \in \mathbb{R}^{3}$, by substituting into the time derivative of a smooth function $f(\boldsymbol{\Pi}, \boldsymbol{\Gamma})$.
3. The hat map ${ }^{\wedge}: \mathbb{R}^{3} \mapsto \mathfrak{s o}(3)$ is given by $\widehat{\mathbf{u}}:=\mathbf{u} \times$, or in Cartesian components, $(\widehat{\mathbf{v}})_{i j}=-\epsilon_{i j k} v_{k}$. Recall from the lectures that the hat map satisfies the following identities:

$$
\begin{aligned}
\widehat{\mathbf{u}} \mathbf{v} & =\mathbf{u} \times \mathbf{v}, \\
(\mathbf{u} \times \mathbf{v})^{\wedge} & =\widehat{\mathbf{u}} \widehat{\mathbf{v}}-\widehat{\mathbf{v}} \widehat{\mathbf{u}}=:[\widehat{\mathbf{u}}, \widehat{\mathbf{v}}]=[u, v] \\
{[\widehat{\mathbf{u}}, \widehat{\mathbf{v}}] \mathbf{w} } & =(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}, \\
((\mathbf{u} \times \mathbf{v}) \times \mathbf{w})^{\wedge} & =[[\widehat{\mathbf{u}}, \widehat{\mathbf{v}}], \widehat{\mathbf{w}}] \\
\mathbf{u} \cdot \mathbf{v} & =-\frac{1}{2} \operatorname{trace}(\widehat{\mathbf{u}} \widehat{\mathbf{v}})=:\langle\widehat{\mathbf{u}}, \widehat{\mathbf{v}}\rangle=\langle u, v\rangle,
\end{aligned}
$$

in which hatting a (boldface) vector in \mathbb{R}^{3} makes it into a 3×3 skew matrix in $\mathfrak{s o}$ (3).
Recall also that the ad-action of (ξ, α) on $(\tilde{\xi}, \tilde{\alpha})$ in the special Euclidean Lie algebra in three dimensions $\mathfrak{s e}(3) \simeq \mathfrak{s o}(3)(S) \mathbb{R}^{3}$ is given by:

$$
\operatorname{ad}_{(\xi, \alpha)}(\tilde{\xi}, \tilde{\alpha})=[(\xi, \alpha),(\tilde{\xi}, \tilde{\alpha})]=([\xi, \tilde{\xi}], \xi \tilde{\alpha}-\tilde{\xi} \alpha)
$$

(a) By using the hat map rewrite this ad-action equivalently in terms of vectors in \mathbb{R}^{3}.
(b) The diamond operation $\diamond: \mathbb{R}^{3} \times \mathbb{R}^{3} \mapsto \mathfrak{s o}(3)^{*} \simeq \mathbb{R}^{3}$ is defined by

$$
\langle\beta \diamond \alpha, \tilde{\xi}\rangle=-\langle\beta, \tilde{\xi} \alpha\rangle .
$$

Use the hat map to rewrite the diamond operation in vector notation.
What is the interpretation of diamond as an operation among vectors in \mathbb{R}^{3} ?
(c) Under the hat map, the pairing $\langle\cdot, \cdot\rangle: s e(3)^{*} \times s e(3) \rightarrow \mathbb{R}$ transforms into the dot-product of vectors in \mathbb{R}^{3}

$$
\langle(\mu, \beta),(\xi, \alpha)\rangle=\boldsymbol{\mu} \cdot \boldsymbol{\xi}+\boldsymbol{\beta} \cdot \boldsymbol{\alpha}
$$

Use this fact to express the ad*-action of $s e(3)$

$$
\left\langle\operatorname{ad}_{(\xi, \alpha)}^{*}(\mu, \beta),(\tilde{\xi}, \tilde{\alpha})\right\rangle=\left\langle(\mu, \beta), \operatorname{ad}_{(\xi, \alpha)}(\tilde{\xi}, \tilde{\alpha})\right\rangle
$$

in terms of dot-products, cross-products and sums of vectors in \mathbb{R}^{3}.
(d) Consider a Lagrangian $\ell(\xi, \alpha): \mathfrak{s e}(3) \rightarrow \mathbb{R}$ whose variational derivatives are $\mu=\delta \ell / \delta \xi$ and $\beta=\delta \ell / \delta \alpha$. The corresponding $\mathfrak{s o}(3)^{*}$ and \mathbb{R}^{3} components of the Euler-Poincaré equation on $\mathfrak{s e}(3)^{*}$ are given by

$$
\dot{\mu}=\operatorname{ad}_{\xi}^{*} \mu+\beta \diamond \alpha \quad \text { and } \quad \dot{\beta}=-\xi \beta
$$

Use the hat map to write this equation in terms of vectors $\boldsymbol{\mu}, \boldsymbol{\beta}, \boldsymbol{\xi}, \boldsymbol{\alpha}$ in \mathbb{R}^{3}.
What are its conservation laws in vector form?
4. (a) Write the formula for the Legendre transformation of a Lagrangian $\ell(\boldsymbol{\xi}, \boldsymbol{\alpha}): \mathfrak{s e}(3) \rightarrow$ \mathbb{R} to the corresponding Hamiltonian $h(\boldsymbol{\mu}, \boldsymbol{\beta}): \mathfrak{s e}(3)^{*} \rightarrow \mathbb{R}$.
(b) Differentiate the Hamiltonian and determine its partial derivatives $\partial h / \partial \boldsymbol{\mu}$ and $\partial h / \partial \boldsymbol{\beta}$. (Assume the Lagrangian was chosen so that it allows the solution for the old variables $(\boldsymbol{\xi}, \boldsymbol{\alpha})$ in terms of the new variables $(\boldsymbol{\mu}, \boldsymbol{\beta})$.)
(c) Determine the Lie-Poisson bracket defined on $\mathfrak{s e}(3)^{*}$ and expressed in terms of vectors in \mathbb{R}^{3}, by rearranging the time derivative of a smooth function f.
(d) Consider the following Lagrangian $\ell(\boldsymbol{\xi}, \boldsymbol{\alpha}): \mathfrak{s e}(3) \rightarrow \mathbb{R}$,

$$
\ell(\boldsymbol{\xi}, \boldsymbol{\alpha})=\frac{1}{2}|\boldsymbol{\xi} \times \hat{\mathbf{z}}|^{2}+\frac{1}{2} \boldsymbol{\alpha} \cdot \mathbb{M} \boldsymbol{\alpha}
$$

for a constant unit vector $\hat{\mathbf{z}}$ and a symmetric matrix \mathbb{M}.
Write the corresponding Euler-Poincaré and Lie-Poisson Hamiltonian equations in vector form.
5. Consider Hamilton's principle $\delta S=0$ for

$$
S=\int_{a}^{b} \int_{-\infty}^{\infty} \ell(\widehat{\Omega}, \widehat{\Xi}) d x d t, \quad \text { with } \quad \widehat{\Omega}(t, x)=O^{-1} \partial_{t} O(t, x) \quad \text { and } \quad \widehat{\Xi}(t, x)=O^{-1} \partial_{x} O(t, x)
$$

where $O(t, x) \in S O(3)$ a real valued map $O: \mathbb{R} \times \mathbb{R} \rightarrow S O(3)$.
(a) Write the auxiliary equation for the evolution of $\widehat{\Xi}(t, x)$ obtained from its definition. Use the hat map to transform this equation into vector form for $\boldsymbol{\Xi}(t, x) \in \mathbb{R}^{3}$. By the same type of calculation, determine the vector forms of the variations $\delta \boldsymbol{\Omega}$ and $\delta \boldsymbol{\Xi}$.
(b) Determine the Euler-Poincaré equation in vector form for $\Omega(t, x) \in \mathbb{R}^{3}$ by using Hamilton's principle. (In the pairing use L^{2} spatial integration of dot product.)
(These auxiliary and Euler-Poincaré equations will be partial differential equations. Assume homogeneous endpoint and boundary conditions on $\boldsymbol{\Omega}(t, x), \boldsymbol{\Xi}(t, x)$ and the variation $\boldsymbol{\eta}=\left(O^{-1} \delta O(t, x)\right)$) when integrating by parts.)
(c) Legendre transform this Lagrangian to obtain the corresponding Hamiltonian. Differentiate the Hamiltonian and determine its partial derivatives. Write the EulerPoincaré equation in terms of the new momentum variable $\Pi=\delta \ell / \delta \Omega$.
(d) Write equations for stationary solutions $\partial_{t} \rightarrow 0$ and spatially independent solutions $\partial_{x} \rightarrow 0$ of the Euler-Poincaré and auxiliary equation using the Legendre transformed quantities $(\boldsymbol{\Pi}, \boldsymbol{\Xi})$. How are these two types of solutions related to each other?

