1. For a Lagrangian $L: TG \mapsto \mathbb{R}$ which is left-invariant under the action of a group G, one defines Hamilton's variational principle on a family of time-dependent curves in G by

$$\delta S = \delta \int_a^b L(g(t), \dot{g}(t)) dt = 0,$$

for variations $\delta g \in T_gG$ that vanish at the endpoints in time. By left-invariance of L, this Hamilton's principle is equivalent to the reduced variational principle

$$\delta S_{\rm red} = \delta \int_a^b l(\xi) dt = 0,$$

with $L(g,\dot{g})=L(e,g^{-1}\dot{g})=l(\xi)$ where $\xi=g^{-1}\dot{g}\in T_eG\simeq \mathfrak{g}$ is an element of the Lie algebra \mathfrak{g} of the group G and $\delta\xi$ also vanishes at the endpoints in time.

- (a) Compute the variation $\delta \xi = \delta(g^{-1}\dot{g})$ that is inherited from the variation $\delta g \in T_gG$.
- (b) Derive the Euler-Poincaré equation from the reduced variational principle $\delta S_{\rm red}=0$ by using the formula for $\delta \xi$ and integrating by parts.
- (c) Use the Legendre transformation to obtain the corresponding Hamiltonian equation in terms of the Lie-Poisson bracket.

- 2. Let the vector $\Omega(t) = (\Omega_1, \Omega_2, \Omega_3) \in \mathbb{R}^3$ denote the body angular velocity of a heavy top. Let $\Omega(t) = (R^{-1}(t)\dot{R}(t))^{\hat{}}$ denote the hat map $\hat{}$: $\mathbb{R}^3 \mapsto \mathfrak{so}(3)$ where $R(t) \in SO(3)$ is a 3×3 special orthogonal matrix. The other top parameters are
 - $-\mathbb{I} = \operatorname{diag}(I_1, I_2, I_3)$ is the constant moment of inertia tensor, diagonalized in the body principal axes.
 - $-\Gamma(t)=R^{-1}(t)\hat{\mathbf{z}}$ represents the motion of the unit vector along the vertical axis, as seen from the body.
 - $-\chi$ is the constant vector in the body from the point of support to the body's center of mass.
 - -m is the total mass of the body and g is the constant acceleration of gravity.
 - (a) Compute the vector equation of motion for the auxiliary variable $\Gamma(t)$ from its definition.
 - (b) Derive the Euler-Poincaré equations for the motion of a heavy top from the following reduced action

$$\delta S_{\mathrm{red}} = 0$$
, with $S_{\mathrm{red}} = \int_a^b l(\mathbf{\Omega}, \mathbf{\Gamma}) dt = \int_a^b \frac{1}{2} \mathbf{\Omega} \cdot \mathbb{I} \mathbf{\Omega} - mg \, \mathbf{\chi} \cdot \mathbf{\Gamma} \, dt$,

where variations of Ω and Γ are restricted to be of the form

$$\delta \Omega = \dot{\Sigma} + \Omega \times \Sigma$$
 and $\delta \Gamma = \Gamma \times \Sigma$,

arising via the hat map from variations of the definitions $\Omega=(R^{-1}\dot{R})^{\hat{}}$ and $\Gamma=R^{-1}(t)\hat{\mathbf{z}}$ in which $\Sigma(t)=(R^{-1}\delta R)^{\hat{}}$ is a curve in \mathbb{R}^3 that vanishes at the endpoints in time.

- (c) Write the formula for the Legendre transformation of a Lagrangian $l(\Omega, \Gamma): \mathfrak{so}(3) \times \mathbb{R}^3 \to \mathbb{R}$ to the corresponding Hamiltonian $h(\Pi, \Gamma): \mathfrak{so}(3)^* \times \mathbb{R}^3 \to \mathbb{R}$, with Π defined by $\Pi = \partial l/\partial \Omega$. Then differentiate the Hamiltonian and determine its partial derivatives $\partial h/\partial \Pi$ and $\partial h/\partial \Gamma$.
- (d) Write the Euler-Poincaré equation for $\partial l/\partial\Omega$ and the auxiliary equation for Γ in terms of the angular momentum variable $\Pi=\partial l/\partial\Omega$ and the partial derivatives of the Hamiltonian $\partial h/\partial\Pi$ and $\partial h/\partial\Gamma$.
- (e) Recover the Lie-Poisson bracket for the heavy top expressed in terms of vectors in $\Pi, \Gamma \in \mathbb{R}^3$, by substituting into the time derivative of a smooth function $f(\Pi, \Gamma)$.

3. The hat map $\widehat{}$: $\mathbb{R}^3 \mapsto \mathfrak{so}(3)$ is given by $\widehat{\mathbf{u}} := \mathbf{u} \times$, or in Cartesian components, $(\widehat{\mathbf{v}})_{ij} = -\epsilon_{ijk} v_k$. Recall from the lectures that the hat map satisfies the following identities:

$$\begin{split} \widehat{\mathbf{u}}\mathbf{v} &= \mathbf{u} \times \mathbf{v} \,, \\ (\mathbf{u} \times \mathbf{v})^{\widehat{}} &= \widehat{\mathbf{u}} \, \widehat{\mathbf{v}} - \widehat{\mathbf{v}} \, \widehat{\mathbf{u}} =: \left[\widehat{\mathbf{u}}, \widehat{\mathbf{v}} \right] = \left[u, v \right], \\ \left[\widehat{\mathbf{u}}, \widehat{\mathbf{v}} \right] \mathbf{w} &= \left(\mathbf{u} \times \mathbf{v} \right) \times \mathbf{w} \,, \\ \left((\mathbf{u} \times \mathbf{v}) \times \mathbf{w} \right)^{\widehat{}} &= \left[\left[\widehat{\mathbf{u}}, \widehat{\mathbf{v}} \right], \, \widehat{\mathbf{w}} \right], \\ \mathbf{u} \cdot \mathbf{v} &= -\frac{1}{2} \operatorname{trace}(\widehat{\mathbf{u}} \, \widehat{\mathbf{v}}) =: \left\langle \widehat{\mathbf{u}}, \, \widehat{\mathbf{v}} \right\rangle = \left\langle u, \, v \right\rangle, \end{split}$$

in which hatting a (boldface) vector in \mathbb{R}^3 makes it into a 3×3 skew matrix in $\mathfrak{so}(3)$.

Recall also that the ad-action of (ξ, α) on $(\tilde{\xi}, \tilde{\alpha})$ in the special Euclidean Lie algebra in three dimensions $\mathfrak{se}(3) \simeq \mathfrak{so}(3) \, \circledS \, \mathbb{R}^3$ is given by:

$$\operatorname{ad}_{(\xi,\alpha)}(\tilde{\xi},\tilde{\alpha}) = [(\xi,\alpha),(\tilde{\xi},\tilde{\alpha})] = ([\xi,\tilde{\xi}],\xi\tilde{\alpha}-\tilde{\xi}\alpha)$$

- (a) By using the hat map rewrite this ad-action equivalently in terms of vectors in \mathbb{R}^3 .
- (b) The diamond operation $\diamond: \mathbb{R}^3 \times \mathbb{R}^3 \mapsto \mathfrak{so}(3)^* \simeq \mathbb{R}^3$ is defined by

$$\langle \beta \diamond \alpha \,, \, \tilde{\xi} \rangle = -\langle \beta \,, \, \tilde{\xi} \alpha \rangle \,.$$

Use the hat map to rewrite the diamond operation in vector notation. What is the interpretation of diamond as an operation among vectors in \mathbb{R}^3 ?

(c) Under the hat map, the pairing $\langle \cdot, \cdot \rangle : se(3)^* \times se(3) \to \mathbb{R}$ transforms into the dot-product of vectors in \mathbb{R}^3

$$\langle (\mu, \beta), (\xi, \alpha) \rangle = \mu \cdot \xi + \beta \cdot \alpha$$

Use this fact to express the ad*-action of se(3)

$$\langle \operatorname{ad}_{(\xi,\alpha)}^*(\mu,\beta), (\tilde{\xi},\tilde{\alpha}) \rangle = \langle (\mu,\beta), \operatorname{ad}_{(\xi,\alpha)}(\tilde{\xi},\tilde{\alpha}) \rangle$$

in terms of dot-products, cross-products and sums of vectors in \mathbb{R}^3 .

(d) Consider a Lagrangian $\ell(\xi,\alpha):\mathfrak{se}(3)\to\mathbb{R}$ whose variational derivatives are $\mu=\delta\ell/\delta\xi$ and $\beta=\delta\ell/\delta\alpha$. The corresponding $\mathfrak{so}(3)^*$ and \mathbb{R}^3 components of the Euler-Poincaré equation on $\mathfrak{se}(3)^*$ are given by

$$\dot{\mu} = \operatorname{ad}_{\varepsilon}^* \mu + \beta \diamond \alpha \quad \text{and} \quad \dot{\beta} = -\xi \beta \,.$$

Use the hat map to write this equation in terms of vectors μ, β, ξ, α in \mathbb{R}^3 .

What are its conservation laws in vector form?

- 4. (a) Write the formula for the Legendre transformation of a Lagrangian $\ell(\boldsymbol{\xi}, \boldsymbol{\alpha}) : \mathfrak{se}(3) \to \mathbb{R}$ to the corresponding Hamiltonian $h(\boldsymbol{\mu}, \boldsymbol{\beta}) : \mathfrak{se}(3)^* \to \mathbb{R}$.
 - (b) Differentiate the Hamiltonian and determine its partial derivatives $\partial h/\partial \mu$ and $\partial h/\partial \beta$. (Assume the Lagrangian was chosen so that it allows the solution for the old variables (ξ, α) in terms of the new variables (μ, β) .)
 - (c) Determine the Lie-Poisson bracket defined on $\mathfrak{se}(3)^*$ and expressed in terms of vectors in \mathbb{R}^3 , by rearranging the time derivative of a smooth function f.
 - (d) Consider the following Lagrangian $\ell(\boldsymbol{\xi}, \boldsymbol{\alpha}) : \mathfrak{se}(3) \to \mathbb{R}$,

$$\ell(\boldsymbol{\xi}, \boldsymbol{\alpha}) = \frac{1}{2} |\boldsymbol{\xi} \times \hat{\mathbf{z}}|^2 + \frac{1}{2} \boldsymbol{\alpha} \cdot \mathbb{M} \boldsymbol{\alpha},$$

for a constant unit vector $\hat{\mathbf{z}}$ and a symmetric matrix \mathbb{M} .

Write the corresponding Euler-Poincaré and Lie-Poisson Hamiltonian equations in vector form.

5. Consider Hamilton's principle $\delta S = 0$ for

$$S = \int_a^b\!\!\int_{-\infty}^\infty\!\!\ell(\widehat{\Omega},\widehat{\Xi})\,dx\,dt\,,\quad \text{with}\quad \widehat{\Omega}(t,x) = O^{-1}\partial_t O(t,x) \quad \text{and} \quad \widehat{\Xi}(t,x) = O^{-1}\partial_x O(t,x)$$

where $O(t,x) \in SO(3)$ a real valued map $O: \mathbb{R} \times \mathbb{R} \to SO(3)$.

- (a) Write the auxiliary equation for the evolution of $\widehat{\Xi}(t,x)$ obtained from its definition. Use the hat map to transform this equation into vector form for $\Xi(t,x)\in\mathbb{R}^3$. By the same type of calculation, determine the vector forms of the variations $\delta\Omega$ and $\delta\Xi$.
- (b) Determine the Euler-Poincaré equation in vector form for $\Omega(t,x)\in\mathbb{R}^3$ by using Hamilton's principle. (In the pairing use L^2 spatial integration of dot product.) (These auxiliary and Euler-Poincaré equations will be partial differential equations. Assume homogeneous endpoint and boundary conditions on $\Omega(t,x)$, $\Xi(t,x)$ and the variation $\eta=(O^{-1}\delta O(t,x))$ when integrating by parts.)
- (c) Legendre transform this Lagrangian to obtain the corresponding Hamiltonian. Differentiate the Hamiltonian and determine its partial derivatives. Write the Euler-Poincaré equation in terms of the new momentum variable $\Pi=\delta\ell/\delta\Omega$.
- (d) Write equations for stationary solutions $\partial_t \to 0$ and spatially independent solutions $\partial_x \to 0$ of the Euler-Poincaré and auxiliary equation using the Legendre transformed quantities (Π, Ξ) . How are these two types of solutions related to each other?