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1. For the singular perturbation problem

εy′′ + (x+ 1)y′ + y2 = 0 (0 < ε� 1), y(0) = 0, y(1) = 1,

seek an outer expansion

y(x) = y0(x) + εy1(x) + ∙ ∙ ∙ .

(i) Give a brief argument to determine the location of the inner layer and the boundary

condition to be satisfied by y0, and hence determine the leading-order solution y0(x).

Seek an inner expansion

y(x) = Y0(X) + εY1(X) + ∙ ∙ ∙ ,

where X is an appropriate inner variable that you need to identify, and find the leading-

order solution Y0.

(ii) Use the leading-order outer and inner solutions to construct a composite solution C00y

based on the additive rule.

Sketch the outer, inner and composite solutions, and indicate the respective regions in

which these solutions are validity.

(iii) Suppose that the interval is changed to −1 ≤ x ≤ 1 so that the boundary condition
becomes y(−1) = 0. Determine the appropriate inner variable and the order-of-
magnitude of the inner solution. (You are not required to solve the inner problem.)
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2. Consider the unsteady boundary-layer equations

Ux + VY = 0, Ut + UUx + V UY = u0,t + u0u0,x + UY Y , (1)

for U(x, Y ) and V (x, Y ), where u0(x, t) is the inviscid slip velocity.

(i) Show that if

Ũ(x, Y, t) = U
(
x, Y + f(x, t)

)
,

Ṽ (x, Y, t) = V
(
x, Y + f(x, t)

)
− fx(x, t)U

(
x, Y + f(x, t)

)
− ft(x, t),

Ũ and Ṽ also satisfy the same boundary-layer equations.

Explain how the above relations could be used to solve the boundary-layer flow along

a curved surface Y = −f(x, t), on which the boundary conditions, U = 0 and

V = −ft(x, t), have to be satisfied.

(ii) Let χ = u20 − U
2, and ψ be the stream function such that

U = ψY , V = −ψx .

Show that the steady version of boundary-layer equations (??) can be written as

∂χ

∂x
= U

∂2χ

∂ψ2
, Y =

∫ ψ

0

dψ

(u20 − χ)1/2
.

Comment on the nature of the boundary-layer equations, and the implication if U < 0

for some ψ.
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3. A wall jet over a flat plate is subjected to a weak steady suction through a slot at a distance

L from the leading edge. In a coordinate system (x, y), where x and y are normalised by L,

the flow field is governed by the two-dimensional steady Navier-Stokes equations

ux + vy = 0,

uux + vuy = −px + 1
R
(uxx + uyy) ,

uvx + vvy = −py + 1
R
(vxx + vyy) .






The slot has a width of O(D)� 1, and the suction velocity is given by

v = εsVs(X), with X = x/D,

where εs � 1. The suction only produces a small perturbation to the oncoming wall-jet flow
so that in the main part of the boundary layer the flow field can be written as

(u, v, p) = (U0(x, Y ), R
− 1
2V0, P0) + ε

(
U,
R−

1
2

D
V,

R−1

D2
P
)
,

where ε� O(1) is to be determined later. The wall jet profile, U0, has the property that

U0(x, Y )→ Y as Y → 0, and U0(x, Y )→ 0 as Y →∞,

with Y = R
1
2y.

(i) Derive the governing equations for (U, V, P ), and verify that they have the solution

U = A(X)U0,Y , V = −A′(X)U0, P = A′′(X)

∫ Y

0

U20 dY + P0(X),

where A(X) and P0 are arbitrary functions of X.

Explain briefly why P0 must be chosen so that P → 0 as Y →∞.

(ii) Explain why it is necessary to introduce a viscous sub-layer (lower deck). Deduce the

width of this layer, Δ, in terms of D and R.

Show that

ε ∼ εsR
1
2D

2
3 .

Estimate the inertia in the viscous sub-layer.

Deduce that the flow becomes interactive if

D = O(R−
3
7 ).

(iii) Show that if εs ∼ R−
5
14 , the lower deck is nonlinear.

Write down the equations governing the lower deck.

State the pressure-displacement relation as well as the boundary and matching conditions.
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4. The interaction of a (Mach) wave with a supersonic boundary-layer flow may be described by

triple deck theory, in which the lower deck is governed by the equations

uX + vy = 0, uuX + vuy = −pX + uyy,

with the boundary conditions u = v = 0 on y = 0,

and the matching condition with the main deck

u→ y + A(X) as y →∞ .

The pressure p is related to the upper deck pressure p via

p = p(X, 0) + PI(X),

where PI(X) is a given function representing the pressure of the incident wave. In the upper

deck, the pressure of the reflected wave, p(X, y), is governed by equation

(M2 − 1)
∂2p

∂X2
−
∂2p

∂y2
= 0, (∗)

subject to the boundary conditions

∂p

∂y
= A′′(X)− (M2 − 1)1/2P ′I(X), on y = 0 , p is finite as y →∞ ,

where M > 1 is the Mach number.

(i) Verify that

p = f
(
X − (M2 − 1)1/2y

)

satisfies equation (∗) for an arbitrary function f , and derive the pressure-displacement
relation which relates p, A and PI .

(ii) For the case where PI(X) = ε e
iαX + c.c. with ε� O(1), seek a solution of the form

(u, v, p, A) = (y, 0, 0, 0) + ε
(
û(y), v̂(y), p̂, Â

)
eiαX +O(ε2).

By solving the linearised system, find Â, and hence show that the reflected wave may be

written as

p(X, y) = ε r eiα[X−(M
2−1)1/2y] + c.c.

with (the reflection coefficient)

r =
(iα)2/3(M2 − 1)1/2Ai′(0) + α2

∫∞
0
Ai(ζ)dζ

(iα)2/3(M2 − 1)1/2Ai′(0)− α2
∫∞
0
Ai(ζ)dζ

.
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5. The stability of a three-dimensional boundary layer is studied by introducing a three-

dimensional disturbance, and the perturbed flow field is written as

(u, v, w, p) =
(
U0(x/R, y), R

−1V0(x/R, y),W0(x/R, y), 0
)
+ ε(ũ, ṽ, w̃, p̃),

where x, y and z are non-dimensionalised by a reference boundary layer thickness δ, the

Reynolds number R is based on δ, and ε� 1 represents the magnitude of the perturbation.

Suppose that (u, v, w, p) satisfy the Navier-Stokes equations

ux + vy + wz = 0,

uux + vuy + wuz = −px + 1
R
(uxx + uyy + uzz) ,

uvx + vvy + wvz = −py + 1
R
(vxx + vyy + vzz) ,

uwx + vwy + wwz = −pz + 1
R
(wxx + wyy + wzz) .






(i) Derive the linearised equations governing the perturbation (ũ, ṽ, w̃, p̃). Indicate the

terms which represent the non-parallel-flow effect.

(ii) Explain what is meant by Prandtl’s parallel-flow approximation.

Suppose that this approximation is employed to seek a normal-mode solution of the form

(ũ, ṽ, w̃, p̃) =
(
û(y), v̂(y), ŵ(y), p̂(y)

)
ei{αx+βz} + c.c.

Derive the equations governing û, v̂, ŵ and p̂, and hence show that v̂ satisfies

{
(U0 +

β

α
W0)

( ∂2

∂y2
− α2

)
− (U0,yy +

β

α
W0,yy)− (iαR)

−1
( ∂2

∂y2
− α2

)2}
v̂ = 0.

(iii) For α = O(1) and β = O(1), what is the consistent governing equation in the limit

R� O(1)? What is the order of error caused by neglecting the non-parallel flow effect?

(iv) Under the assumptions that U0 ∼ λ1y, W0 ∼ λ3y as y → 0, and U0,yy 6= 0 and
W0,yy 6= 0 at y = 0, the base flow may be unstable to long-wavelength disturbances for
which

β = R−3/7β0, α = −R−3/7(λ3/λ1)β0 .

Show that viscosity is a leading-order effect in a sublayer where y ∼ O(R−1/7).
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