1. For the singular perturbation problem

$$\epsilon y'' + y' + y^2 = 0 \quad (0 < \epsilon \ll 1) , \quad y(0) = 2, \quad y(1) = \frac{1}{2},$$

seek an outer expansion

$$y(x) = y_0(x) + \epsilon y_1(x) + \dots$$

Explain briefly why the inner (boundary) layer must be at x = 0, and hence determine the functions $y_0(x)$ and $y_1(x)$.

Seek an inner expansion

$$y(x) = Y_0(X) + \epsilon Y_1(X) + \dots ,$$

and calculate the first two terms, where $X=x/\epsilon.$

Use the two-term outer and inner expansions to construct a composite solution $C_{11}y$ based on the additive rule.

2. A three-dimensional flow past a flat plate of length L is described in a coordinate system (x,y,z) normalised by L, where x and z are on the plate surface with x and z being parallel and perpendicular to the leading edge respectively, while y is normal to the plate. The corresponding velocity components, normalised by a reference velocity U_{∞} , are denoted by (u,v,w), and the normalised pressure is denoted by p.

Assuming that the Reynolds number $R=U_{\infty}L/\nu>>1$, where ν is the kinematic viscosity, write down the governing equations for the inviscid approximation (u_0,v_0,w_0,p_0) , and specify appropriate boundary conditions.

By a brief scaling argument, deduce that the boundary layer lies in a layer $y \sim O(R^{-1/2})$, and that the expansion for (u, v, w, p) in the boundary layer takes the form

$$(u, v, w, p) = (U(x, Y, z), R^{-1/2}V(x, Y, z), W(x, Y, z), P(x, z)) + \dots,$$

where $Y=R^{1/2}y$. Derive the boundary-layer equations, specify the appropriate boundary and matching conditions, and determine the pressure gradients P_x and P_z in terms of relevant slip velocities.

If the inviscid slip velocities are

$$u_0 = x^m, \quad w_0 = \beta$$
 (constant),

there exists a similarity solution of the form

$$U = x^m f'(\eta), \quad V = -\frac{1}{2} x^{(m-1)/2} \Big[(m+1)f + (m-1)\eta f'(\eta) \Big], \quad W = g(\eta),$$

where $\eta = Y/s(x)$.

Deduce that $s(x)=x^{(1-m)/2}$, and show that f and g satisfy the equations

$$f''' + \frac{1}{2}(m+1)ff'' + m(1-f'^2) = 0$$
, $g'' + \frac{1}{2}(m+1)fg' = 0$,

and state the boundary and matching conditions.

For the special case m=0, deduce a simple relation between f and g.

3. In a suitably non-dimensionalised coordinate system (x,y), a steady flow is described by the Navier-Stokes equations

Suppose that the surface pressure gradient is such that in the vicinity of a point x_s , the boundary layer velocity field, $\left(U_0(x,Y),R^{-\frac{1}{2}}V_0(x,Y)\right)$, has the property that

$$U_0(x,Y) \to Y^2$$
 as $Y \to 0$; $U_0(x,Y) \to 1$ as $Y \to \infty$,

where $Y = R^{\frac{1}{2}}y$.

When the flow is perturbed by a sudden localised perturbation in the region $x-x_s=O(D)\ll 1$, the solution in the main part of the boundary layer can be sought in the form

$$u = U_0 + \epsilon U_1(X, Y) + \dots, \quad v = R^{-\frac{1}{2}} V_0 + \frac{\epsilon R^{-\frac{1}{2}}}{D} V_1(X, Y) + \dots,$$

where $\epsilon \ll 1$, and $X = (x - x_s)/D$.

Derive the equations for U_1 and V_1 , and find the solution for U_1 and V_1 .

Examine the behaviour of V_1 as $Y \to \infty$, and explain why an upper deck is needed. Estimate the order of magnitude of the pressure in the upper deck.

Examine the behaviour of U_1 as $Y \to 0$, and deduce the width of this layer in terms of D and R. Estimate the streamwise velocity of the perturbation and the inertia in terms of D and ϵ .

Show that the flow becomes interactive when

$$D = O(R^{-2/7}) .$$

Comment briefly on the role of each of the three decks.

Assuming that ϵ is sufficiently small, deduce the expansion for the flow field in the lower-deck and derive the governing equations, and specify the matching condition with the main-deck solution.

4. The boundary-layer flow of a stratified fluid subject to a localised unsteady suction may be described by triple deck theory, in which the lower deck is governed by the equations

$$\left. \begin{array}{ll} u_X+v_y=0, & u_t+uu_X+vu_y=-P_X+u_{yy} \\ \\ u=0, & v=v_s(X,t) & \text{on} \quad y=0 \\ \\ u\to y+A(X,t) & \text{as} \quad y\to\infty \end{array} \right\}.$$

The pressure P is related to the upper deck pressure p via

$$P = p(X, 0, t).$$

In the upper deck, the pressure $p(X, \overline{y}, t)$ satisfies

$$\frac{\partial^2 p}{\partial X^2} + \frac{\partial^2 p}{\partial \overline{u}^2} + \gamma^2 p = 0,$$

subject to the boundary condition

$$\frac{\partial p}{\partial \overline{y}} = A_{XX} + \gamma^2 A \quad \text{on} \quad \overline{y} = 0; \qquad p \text{ is finite as } \overline{y} \to \infty \ ,$$

where $\gamma > 0$ is a constant representing the effect of stratification.

For a weak suction $v_s = HV_s(X) \, \mathrm{e}^{-\,\mathrm{i}\,\omega t} + c.c.$ with $H \ll 1$, seek a solution of the form

$$(u, v, P, A) = (y, 0, 0, 0) + H(u_1(y), v_1(y), P_1, A_1) e^{-i\omega t} + O(H^2).$$

Derive the linearised system including the boundary and matching conditions, and show that

$$-i \omega u_{1,y} + y u_{1,Xy} - u_{1,yyy} = 0, \qquad u_{1,yy}(X,0) = P_{1,X} + V_s(X).$$

Suppose that \widehat{P}_1 is the Fourier transform of P_1 , i.e.

$$\widehat{P}_1 = \int_{-\infty}^{\infty} P_1(X) e^{-i kX} dX.$$

Solve the system by Fourier transform to show that

$$\widehat{P}_1 = -\frac{\widehat{V}_s(k)}{\mathrm{i}\,k\Delta(k,\omega)} \int_{\zeta_0}^{\infty} Ai(\zeta)\,d\zeta \quad \text{with} \quad \zeta = (\mathrm{i}\,k)^{\frac{1}{3}}y + \zeta_0, \quad \zeta_0 = -\,\mathrm{i}\,\omega(\mathrm{i}\,k)^{-2/3}$$

where \widehat{V}_s is the Fourier transform of V_s , and

$$\Delta(k,\omega) = \int_{\zeta_0}^{\infty} Ai(\zeta) d\zeta + i(ik)^{2/3} Ai'(\zeta_0) / \left(k(k^2 - \gamma^2)^{1/2}\right),$$

with Ai being Airy function.

5. The stability of a two-dimensional boundary layer is studied by introducing a two-dimensional disturbance, and the perturbed flow field is written as

$$(u, v, p) = (U_0(x/R, y), R^{-1}V_0(x/R, y), 0) + \epsilon(\tilde{u}, \tilde{v}, \tilde{p}),$$

where x, y are non-dimensionalised by a reference boundary layer thickness δ , the Reynolds number R is based on δ , and $\epsilon \ll 1$ represents the magnitude of the perturbation.

Given that (u, v, p) satisfy the Navier-Stokes equations

derive the linearised equations governing the perturbation $(\tilde{u}, \tilde{v}, \tilde{p})$. Indicate the terms which represent the non-parallel-flow effect.

Explain what is meant by Prandtl's parallel-flow approximation.

Suppose that this approximation is employed to seek a normal-mode solution of the form

$$(\tilde{u}, \tilde{v}, \tilde{p}) = (\widehat{u}(y), \widehat{v}(y), \widehat{p}(y)) e^{i\{\alpha x - \omega t\}} + c.c..$$

Derive the equations governing \widehat{u} , \widehat{v} , \widehat{p} , and hence show that \widehat{v} satisfies

$$\left\{ (U_0 - \omega/\alpha) \left(\frac{\partial^2}{\partial y^2} - \alpha^2 \right) - U_{0,yy} - (\mathrm{i} \, \alpha R)^{-1} \left(\frac{\partial^2}{\partial y^2} - \alpha^2 \right)^2 \right\} \widehat{v} = 0.$$

Comment on the appropriateness of this approach for explaining boundary-layer instability, in the following two cases:

- (1) U_0 has an inflection point;
- (2) U_0 has no inflection point.

In the case (2) above, relevant normal modes are of long wavelength in the sense that

$$\alpha \sim O(R^{-1/4}), \quad \omega \sim O(R^{-1/2}).$$

Show that viscosity is negligible for $y \sim O(1)$. Assuming that $U_0 \sim y$ as $y \to 0$, deduce that viscosity is a leading-order effect in a sublayer where $y \sim O(R^{-1/4})$. Show that in the x- momentum equation for the perturbation, the ratio of the non-parallel-flow term to the viscous term is $O(R^{-3/4})$.