For the singular perturbation problem
€y// —I— y/ + y2 — 0 (0 < € << 1) ) y(o) = 27 y(l) — %7

seek an outer expansion

y(z) =yo(z) + eya(z) + ... .

Explain briefly why the inner (boundary) layer must be at 2 = 0, and hence determine the

functions yo(x) and yi(x).

Seek an inner expansion
y(z) = Yo(X) + Hi(X) ... .
and calculate the first two terms, where X = z/e¢.

Use the two-term outer and inner expansions to construct a composite solution ('j;y based

on the additive rule.
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A three-dimensional flow past a flat plate of length L is described in a coordinate system
(x,y,z) normalised by L, where = and z are on the plate surface with = and z being
parallel and perpendicular to the leading edge respectively, while y is normal to the plate.
The corresponding velocity components, normalised by a reference velocity U, are denoted
by (u,v,w), and the normalised pressure is denoted by p.

Assuming that the Reynolds number R = U, L./v >> 1, where v is the kinematic viscosity,
write down the governing equations for the inviscid approximation (ug, vo, wo, po), and
specify appropriate boundary conditions.

By a brief scaling argument, deduce that the boundary layer lies in a layer y ~ O(R_I/Z),
and that the expansion for (u,v,w, p) in the boundary layer takes the form

(u,v,w,p) = (U(x,Y,z), B_I/QV(;E,Y, z),W(z,Y, z), P(:c,z)) +...,

where Y = R'/?y. Derive the boundary-layer equations, specify the appropriate boundary
and matching conditions, and determine the pressure gradients P, and P, in terms of
relevant slip velocities.

If the inviscid slip velocities are
m

up = z™, wo= [ (constant),
there exists a similarity solution of the form
U= P, V= =2 n 4 )+ (m = D] W= g,
where n = Y/s(z).
Deduce that s(z) = (!=™)/2 and show that f and g satisfy the equations
" 3mA D +m(1 =) =0, g¢"+35(m+1)fg =0,

and state the boundary and matching conditions.

For the special case m = 0, deduce a simple relation between f and g.
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In a suitably non-dimensionalised coordinate system (z,y), a steady flow is described by
the Navier-Stokes equations

Ug +vy, = 0
Ut + VUy = —Pz + R_l(u:l?:l? + uyy)
uvy +vvy = —py + R_l(vm + vyy)

Suppose that the surface pressure gradient is such that in the vicinity of a point z;, the
boundary layer velocity field, (UO(:I;, Y), R_%‘/O(:L’, Y)) has the property that

U(z,Y) = Y? as Y = 0; Upz,Y)—=1 as Y — o0,

where Y = R%y.

When the flow is perturbed by a sudden localised perturbation in the region = — =, =
O(D) < 1, the solution in the main part of the boundary layer can be sought in the form

1
eR™2

uw=Up+ el (X,Y)+..., v=R73V+ Vi(X,Y) + ...,

where ¢ € 1, and X = (z — z5)/D.
Derive the equations for U/; and V}, and find the solution for U/; and V;.

Examine the behaviour of V] as ¥ — oo, and explain why an upper deck is needed.
Estimate the order of magnitude of the pressure in the upper deck.

Examine the behaviour of U/; as Y — 0, and deduce the width of this layer in terms of D
and R. Estimate the streamwise velocity of the perturbation and the inertia in terms of D
and e.

Show that the flow becomes interactive when
D=0(R>).

Comment briefly on the role of each of the three decks.

Assuming that ¢ is sufficiently small, deduce the expansion for the flow field in the lower-
deck and derive the governing equations, and specify the matching condition with the
main-deck solution.
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The boundary-layer flow of a stratified fluid subject to a localised unsteady suction may be
described by triple deck theory, in which the lower deck is governed by the equations

ux + vy, =0, us +uux + vuy = —Px 4 uy,
u=0, v=uvsX,1) on y=0
u—y+ AX, 1) as y — oo
The pressure P is related to the upper deck pressure p via
P =p(X,0,1).
In the upper deck, the pressure p(X,7,1) satisfies

a2]3 azp 2
=0
ox: T TYP=0

subject to the boundary condition

0 C e
a—}z:AXx+72A on y=0; p is finite as § — oo ,
Y

where v > 0 is a constant representing the effect of stratification.

For a weak suction vy = HV (X )e 1% +c.c. with H < 1, seek a solution of the form
(u,v, P, A) = (y,0,0,0) + H(ul(y),vl(y),Pl,A1> emivt LO(H?).

Derive the linearised system including the boundary and matching conditions, and show
that
- iwul,y F YU xy — UL yyy = 07 ul,yy(Xv 0) = PI,X + VS(X)

Suppose that ]31 is the Fourier transform of P, i.e.

P\lz/ Pl(X)e_ikXdX.

o0

Solve the system by Fourier transform to show that

~ Vi(k o : 1 -2/3
Pi= i [ AQAC Wit (= R Ge Go= —ieh

where V; is the Fourier transform of V, and

Ak, w) = /ooAi(C) d¢+ i(ik)2/3Ai’(§0)/<k(k2 _ 72)1/z>7

Co

with Az being Airy function.
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The stability of a two-dimensional boundary layer is studied by introducing a two-
dimensional disturbance, and the perturbed flow field is written as

(. v, p) = (Uo(a/ Roy), B~ Vala/R,y), 0) + e(i, 0, 7)

where z, y are non-dimensionalised by a reference boundary layer thickness §, the Reynolds
number R is based on 4, and ¢ < 1 represents the magnitude of the perturbation.

Given that (u,v,p) satisfy the Navier-Stokes equations

Uy +v, = 0
U+ Uty + VUy = —Pp + 5 (Upe + Uyy) P
OF —I_ UV —I_ va == _py + %(UII —I_ Uyy)

derive the linearised equations governing the perturbation (@, ©, p). Indicate the terms
which represent the non-parallel-flow effect.

Explain what is meant by Prandtl’s parallel-flow approximation.

Suppose that this approximation is employed to seek a normal-mode solution of the form

(i, 5, ) = (ly), 7y), Ply)) € e,

Derive the equations governing u, v, p, and hence show that v satisfies
9’ 2 . (O 2\~
{(UO—CU/OK)(Q—yQ—Oé)—U07yy—(1aR) (a—yQ_a> }UZO

Comment on the appropriateness of this approach for explaining boundary-layer instability,
in the following two cases:

(1) Up has an inflection point;
(2) Uy has no inflection point.

In the case (2) above, relevant normal modes are of long wavelength in the sense that

a~ORYY, w~ O(R™V?).

Show that viscosity is negligible for y ~ O(1). Assuming that Uy ~ y as y — 0, deduce
that viscosity is a leading-order effect in a sublayer where y ~ O(R~'/*). Show that in
the x— momentum equation for the perturbation, the ratio of the non-parallel-flow term
to the viscous term is O( R=3/%).
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