Note: Throughout this paper $\left\{\epsilon_{t}\right\}$ is a sequence of uncorrelated random variables (white noise) having zero mean and variance σ_{ϵ}^{2}, unless stated otherwise. The term "stationary" will always be taken to mean second-order stationary. All processes are real-valued unless stated otherwise. The sample interval is unity unless stated otherwise.

1. (a) What is meant by saying that a stochastic process is stationary?
(b) Determine whether the following process is stationary, giving your reasons.

$$
X_{t}+\frac{1}{12} X_{t-1}=\frac{1}{24} X_{t-2}+\epsilon_{t}
$$

(c) Define a real-valued deterministic sequence $\left\{y_{t}\right\}$ by

$$
y_{t}= \begin{cases}+1, & \text { if } t=0,-1,-2, \ldots \\ -1, & \text { if } t=1,2,3, \ldots\end{cases}
$$

Now define a stochastic process by $X_{t}=y_{t} I$, where I is a random variable taking on the values +1 and -1 with probability $1 / 2$ each.
Find the mean, variance and autocovariance of $\left\{X_{t}\right\}$ and determine, with justification, whether this process is stationary.
(d) A complex-valued time series Z_{t} is given by $Z_{t}=C \mathrm{e}^{\mathrm{i}\left(2 \pi f_{0} t+\theta\right)}$, where f_{0} and C are finite real-valued constants and θ is uniformly distributed over $[-\pi, \pi]$.
Determine, with justification, whether this process is stationary.
[The autocovariance for a complex-valued time series is given by $\operatorname{cov}\left\{Z_{t}, Z_{t+\tau}\right\}=$ $E\left\{Z_{t} Z_{t+\tau}^{*}\right\}-E\left\{Z_{t}\right\} E\left\{Z_{t+\tau}^{*}\right\}$, where * denotes complex conjugate.]
2. (a) Suppose $\left\{X_{t}\right\}$ is an $\mathrm{MA}(q)$ process with zero mean, i.e., X_{t} can be expressed in the form

$$
X_{t}=-\theta_{0, q} \epsilon_{t}-\theta_{1, q} \epsilon_{t-1}-\ldots-\theta_{q, q} \epsilon_{t-q},
$$

where the $\theta_{j, q}$'s are constants $\left(\theta_{0, q} \equiv-1, \theta_{q, q} \neq 0\right)$. Show that its autocovariance sequence is given by

$$
s_{\tau}= \begin{cases}\sigma_{\epsilon}^{2} \sum_{j=0}^{q-|\tau|} \theta_{j, q} \theta_{j+|\tau|, q}, & \text { if }|\tau| \leq q, \\ 0, & \text { if }|\tau|>q .\end{cases}
$$

(b) Consider the non-invertible MA(2) process

$$
X_{t}=\epsilon_{t}-\frac{9}{4} \epsilon_{t-2}
$$

with $\theta_{1,2}=0$.
(i) Calculate the autocorrelation sequence of this process.
(ii) Find an invertible $\mathrm{MA}(2)$ process having the same autocorrelation sequence, fully justifying your result.
(c) Suppose that $\left\{X_{t}\right\}$ is the $\mathrm{MA}(2)$ process

$$
X_{t}=\epsilon_{t}-\theta_{2,2} \epsilon_{t-2}
$$

with $\theta_{1,2}=0$.
Now let $Y_{t}=X_{2 t}, t \in \mathbb{Z}$, i.e., the process $\left\{Y_{t}\right\}$ is formed by subsampling every other random variable from the process $\left\{X_{t}\right\}$, and hence $\left\{Y_{t}\right\}$ has a sampling interval of 2 .
Given that $s_{Y, \tau}=s_{X, 2 \tau}$ show that $S_{Y}(f)=2 S_{X}(f)$ for $|f| \leq 1 / 4$.
Hint: A stationary process with autocovariance sequence $\left\{s_{\tau}\right\}$ and sample interval Δt has spectral density function

$$
S(f)=\Delta t \sum_{\tau=-\infty}^{\infty} s_{\tau} \mathrm{e}^{-\mathrm{i} 2 \pi f \tau \Delta t}
$$

3. (a) Use the fact that

$$
(1-z) \sum_{t=-(N-1)}^{N-1} z^{t}=z^{-N+1}-z^{N}
$$

to show that

$$
\sum_{t=-(N-1)}^{N-1} \mathrm{e}^{\mathrm{i} 2 \pi f t}=(2 N-1) \mathcal{D}_{2 N-1}(f),
$$

where $\mathcal{D}_{2 N-1}(f)$ is a form of Dirichlet's kernel, defined as

$$
\mathcal{D}_{2 N-1}(f)=\frac{\sin [(2 N-1) \pi f]}{(2 N-1) \sin (\pi f)}
$$

(b) Consider the following autocovariance sequence,

$$
s_{\tau}= \begin{cases}1, & \text { if }|\tau| \leq K \\ 0, & \text { if }|\tau|>K\end{cases}
$$

where $K \geq 2$. Is $\left\{s_{\tau}\right\}$ the autocovariance sequence for some discrete stationary process with spectral density function $S(f)$?
(c) Specify the three conditions which must be satisfied by a linear time-invariant (LTI) digital filter.
(d) Let $\left\{X_{t}\right\}$ be a discrete stationary process with a spectral density function $S_{X}(f)$. Let

$$
Y_{t}=X_{t}-\frac{1}{2 K+1} \sum_{j=-K}^{K} X_{t+j}
$$

where $K \geq 1$.
Find the spectral density function, $S_{Y}(f)$, for $\left\{Y_{t}\right\}$ when $\left\{X_{t}\right\}$ is white noise with variance unity.
4. (a) What is meant by saying two discrete time stochastic processes $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are jointly stationary stochastic processes?
(b) Suppose $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are zero mean jointly stationary processes given by

$$
X_{t}=\epsilon_{t}+\theta \epsilon_{t-1} ; \quad Y_{t}=\epsilon_{t}-\theta \epsilon_{t-1}
$$

with $|\theta|<1$.
(i) By first finding the cross-covariance sequence $\left\{s_{X Y, \tau}\right\}$, or otherwise, show that the cross-spectrum $S_{X Y}(f)$ is given by

$$
S_{X Y}(f)=\sigma_{\epsilon}^{2}\left[\left(1-\theta^{2}\right)+2 \mathrm{i} \theta \sin 2 \pi f\right] .
$$

(ii) Find the value of the magnitude squared coherence, $\gamma_{X Y}^{2}(f)$.
(iii) Now consider $\left\{X_{t}\right\}$ to be the input to a linear filter with frequency response function $G(f)$ and $\left\{Y_{t}\right\}$ to be the output.
Find $|G(f)|^{2}$ and hence identify the polynomials $\Phi(B)$ and $\Theta(B)$ in the stationary and invertible ARMA representation

$$
\Phi(B) Y_{t}=\Theta(B) X_{t}
$$

Here, as usual, B is the backshift operator.
(iv) Explain the magnitude squared coherence value obtained in (ii) in terms of the result in (iii).
5. Assume that $\left\{X_{t}\right\}$ can be written as a one-sided linear process, so that

$$
X_{t}=\sum_{k=0}^{\infty} \psi_{k} \epsilon_{t-k}=\Psi(B) \epsilon_{t}
$$

We wish to construct the l-step ahead forecast

$$
X_{t}(l)=\sum_{k=0}^{\infty} \delta_{k} \varepsilon_{t-k}=\delta(B) \varepsilon_{t}
$$

(a) Show that the l-step prediction variance $\sigma^{2}(l)=E\left\{\left(X_{t+l}-X_{t}(l)\right)^{2}\right\}$ is minimized by setting $\delta_{k}=\psi_{k+l}, k \geq 0$.
(b) Consider the stationary $\operatorname{AR}(2)$ process $X_{t}=\phi_{2,2} X_{t-2}+\epsilon_{t}$, where $\phi_{1,2}=0$. Show that

$$
X_{t}(l)= \begin{cases}\phi_{2,2}^{l / 2} X_{t}, & \text { if } l \text { even } \\ \phi_{2,2}^{(l+1) / 2} X_{t-1}, & \text { if } l \text { odd }\end{cases}
$$

(c) It was stated in the course notes that for a general $\operatorname{AR}(p)$ process,

$$
X_{t}=\phi_{1, p} X_{t-1}+\ldots+\phi_{p, p} X_{t-p}+\epsilon_{t}
$$

that $X_{t}(l)$ depends only on the last p observed values of $\left\{X_{t}\right\}$ and may be obtained by solving the $\operatorname{AR}(p)$ difference equation with the future innovations set to zero; in particular

$$
X_{t}(1)=\phi_{1, p} X_{t}+\ldots+\phi_{p, p} X_{t-p+1}
$$

which is X_{t+1} with the future innovation set to zero.
(i) Show that, for $p \geq 2$,

$$
X_{t+2}=\phi_{1, p}\left[X_{t}(1)+\epsilon_{t+1}\right]+\sum_{j=2}^{p} \phi_{j, p} X_{t+2-j}+\epsilon_{t+2}
$$

and hence that

$$
X_{t+2}=\sum_{j=1}^{p}\left[\phi_{1, p} \phi_{j, p}+\phi_{j+1, p}\right] X_{t+1-j}+\phi_{1, p} \epsilon_{t+1}+\epsilon_{t+2},
$$

where $\phi_{j, p}=0$ if $j>p$.
(ii) What does the result in (i) suggest for $X_{t}(2)$? Show that this $X_{t}(2)$ agrees with the result in (b).

