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1. (i) Write down the three axioms of a Poisson process with rate λ .

(ii) Let X(t1, t2) be the number of events which occur in the interval [t1, t2) for a Poisson

process with rate λ. Let p0(t) = P(X(0, t) = 0). By expressing p0(t + δt) in terms of

P(X(0, t) = 0) and P(X(t, t + δt) = 0), using the axioms and assuming the process

starts at time 0, show that

p0(t) = e
−λt.

(iii) Vehicles categorized into two types pass under a bridge according to independent Poisson

processes with rates of λH = 2 per minute for heavy goods vehicles and λS = 8 per

minute for all other smaller vehicles.

(a) Let N be the total number of vehicles that pass under the bridge in three minutes.

Find E(N) and var(N).

(b) What is the probability of seeing a heavy goods vehicle before a smaller vehicle?

(c) If, at the end of three minutes you have seen 24 small vehicles, but no heavy goods

vehicles, what is the probability you will see exactly one heavy goods vehicle in the

next minute?

(d) What is the expected value of the random variable representing the time until you

have seen at least one of each type of vehicle?

2. (i) Define the Galton-Watson discrete time branching process.

(ii) In a Galton-Watson discrete time branching process which starts at generation 0 with one

individual, use probability generating functions to show that the mean size of generation

n can be expressed in terms of the mean size of generation 1.

(iii) Three branching processes have offspring probability functions given by

j 0 1 2 3 4 5 ≥ 6
p1(j) 0

1
3

0 0 2
3
0 0

p2(j) 0 0 2
3
0 0 1

3
0

p3(j) t 1− 2t 0 t 0 0 0

where 0 < t ≤ 1
2
.

(a) Find the probability generating functions for the three processes.

(b) Show that p1 and p2 have the same first and second moments.

(c) Find the probability of ultimate extinction for the three processes.
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3. A and B play a sequence of independent games in which A pays B $1 when B wins and B

pays A $2 when A wins. If A has no money and loses, he does not have to pay. B has an

infinite amount of money. The probability that A wins any particular game is p = 9
19
. Let

Xn, n = 0, 1, 2 . . . be A’s total winnings after n games, and qj be the probability that A ever

has exactly $2 if the game starts with X0 = j.

(i) Find expressions in terms of n and p for E(Xn) and var(Xn).

(ii) Derive a recurrence relation for qj in terms of qj−1 and qj+2, valid for j = 1 and for

j ≥ 3.

(iii) Show that for j > 2, the solution qj =
(
2
3

)j−2
satisfies the recurrence relation found in

part (ii).

(iv) Write down a recurrence relation for q0 and hence find q0 and q1.

4. (i) For a discrete time Markov Chain with transition matrix (P = pij; i, j ∈ S), where S is
the state space of the chain, explain what is meant by saying that the Chain is

(a) aperiodic and (b) irreducible.

(ii) A discrete time Markov Chain which is in state Xn after n transitions, has state space

given by the non-negative integers and transition probabilities

pij =

{
0 j > i+ 1
1
i+2

0 ≤ j ≤ i+ 1.

(a) Determine whether the chain is irreducible and aperiodic.

(b) Prove that the stationary distribution satisfies πi = π0/i!, i ≥ 0.

(c) Find and name the distribution of Xn as n→∞.
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5. Let (X(t); t ≥ 0) be a continuous time Markov process with state space S = {0, 1, 2, . . .}.

Denote the transition and transition rate matrices by (P (t) = pi,j(t); i, j = 0, 1, 2, . . .) and

(Q = qi,j ; i, j = 0, 1, 2, . . .) respectively.

(i) Write down the relationship between the elements of P (δt) and the elements of Q.

(ii) Assume that X(t) is the number of events by time t in a Poisson process with rate λ

and X(0) = 0, so that, for t ≥ 0 and i = 0, 1, 2, . . .,

P(X(t+ δt) = i+ 1 |X(t) = i) = λδt+ o(δt)

P(X(t+ δt) = i |X(t) = i) = 1− λδt+ o(δt)

By considering the first row of the forward equations for this process show that X(t) has

a Poisson distribution with parameter λt.

(iii) The lifecycle of a particular organism is categorized into three states as follows: it is born

and stays in state A for a time that is exponentially distributed with parameter δA then

it changes to state B for a time that is exponentially distributed with parameter δB then

it dies (state D).

(a) Write down the Q matrix for this process.

(b) Write down the relationship between Q and the stationary distribution and hence

find the stationary distribution.
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