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1. (i) Write down the three axioms of the Poisson process with rate λ.

(ii) Let X1, X2, . . . , Xk be independent Poisson random variables with means λ1, λ2, . . . , λk
respectively. Using probability generating functions show that X = X1 +X2 + . . .+Xk
is also a Poisson random variable with mean λ = λ1 + λ2 + . . .+ λk.

(iii) Let the process X(t) = X1(t)+X2(t)+. . .+Xk(t) be the superposition of k independent

Poisson processes, X1(t), X2(t), . . . , Xk(t) with rates λ1, λ2, . . . , λk respectively. Using

the axioms of the Poisson process show that

(a) X(t) is also a Poisson process with rate λ = λ1 + λ2 + . . .+ λk.

(b) Given the occurrence of a point in the process X(∙) at time t show that the point
was generated from process Xi(∙) with probability λi/λ (i = 1, 2, . . . , k).

(iv) My television can be either on (state 1) or off (state 0). Jack is pressing the off switch

on his remote control according to a Poisson process with rate λ0 independently of

Elizabeth, who is pushing the on switch on her remote control according to a Poisson

process with rate λ1. The processes start at time 0 when the television is initially off.

Let Z(t) represent the state at time t and N(t) be the total number of times a switch

is pressed in [0, t).

Using the results of part (iii) or otherwise, show that, for any t ≥ 0

(a)

P(N(t) ≥ 1) = 1− e−(λ0+λ1)t.

(b)

p01(t) = P(Z(t) = 1 |Z(0) = 0) =
(
1− e−(λ0+λ1)t

) λ1

λ0 + λ1
.

2. (i) Define the Galton-Watson discrete time branching process.

(ii) A branching process starts with one individual, and has offspring probability function

given by

p(j) =

(
1

2

)j+1
j = 0, 1, 2, . . .

(a) Prove by induction that the probability generating function for the size of the nth

generation is given by

Πn(s) =
n− (n− 1)s
n+ 1− ns

.

(b) What is the mean size of generation n?

(c) Find the probability of ultimate extinction.
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3. (i) Let {Xn, n = 1, 2, 3, . . .} be an unrestricted simple symmetric random walk.
Show that

P(X2m = 0 |X0 = 0) =

(
2m

m

)(
1

2

)2m
.

By using the following approximation

m! ≈ e−mmm+0.5
√
2π,

deduce that such a random walk is recurrent.

(ii) Consider a random walk {Xn = Z1 + . . .+ Zn;n = 1, 2, 3, . . .},
where {Zn;n = 1, 2, 3 . . .} is a sequence of independent random variables with

P(Zi = −2) =
1

3
, P(Zi = +2) =

1

2
, P(Zi = +4) =

1

6
.

(a) Find E(Xn) and var(Xn).

(b) Find an expression for an estimate of the probability that Xn ≤ x when n is large.

4. (i) For a Markov Chain with transition matrix (P = pij ; i, j ∈ S), where S is the state space
of the chain, define

(a) the communicating classes of the Markov chain.

(b) the periodicity of state i.

(ii) To save time spent marking assessed coursework, grades, which can be either A,B or C,

are to be based on the student’s performance in the previous piece of coursework using

the following transition matrix

A

B

C




0.8 0.1 0.1

0.1 0.7 0.2

0 0.1 0.9





(a) Find the stationary distribution associated with this transition matrix. With

justification, state whether this is also the limiting distribution.

(b) If your first piece of coursework is assigned a grade B, what is the expected number

of further pieces of coursework until you next receive a B grade?

Question 4 is continued on Page 4

M3S4/M4S4 Applied Probability (2006) Page 3 of 6



(iii) Let {Xn; n = 0, 1, 2, . . .} be an irreducible, discrete time Markov chain with X0 = 0
(i.e. starting at the origin). Let f denote the probability that X eventually returns to

the origin, and N be the random variable representing the total number of visits to the

origin (where X0 = 0 counts as a visit).

(a) If f < 1, show that

P(N = j) = (1− f)f j−1, j = 1, 2, 3, . . .

(b) Let Nn be the indicator random variable for whether Xn is at the origin at time n:

Nn =

{
1 Xn = 0

0 Xn 6= 0.

By writing N in terms of the Nn, evaluate E(N) and hence prove that state 0 is

transient if and only if

∞∑

n=1

P(Xn = 0 |X0 = 0) <∞.

5. Let (X(t); t ≥ 0) be a continuous time Markov process with state space S = {0, 1, 2, . . .}.

Denote the transition and transition rate matrices by (P (t) = pi,j(t); i, j = 0, 1, 2, . . .) and

(Q = qi,j ; i, j = 0, 1, 2, . . .) respectively, with

pn,n+1(δt) = λδt+ o(δt) n = 0, 1, 2, 3, . . .

pn,n−1(δt) = νδt+ o(δt) n = 1, 2, 3, . . .

pi,j(δt) = o(δt) otherwise

(i) Write down the form of Q for such a process.

(ii) Write out the forward differential difference equations for pi,j(t) in terms of λ and ν.

(iii) Show that π is the stationary distribution of the process if and only if it satisfies

πiqi,i+1 = πi+1qi+1,i, i ≥ 0.

(iv) Using part (iii) or otherwise, show that the stationary distribution π exists if and only if

ν > λ, and is then given by

πi =
ν − λ
ν

(
λ

ν

)i
, i ≥ 0.

(v) For ν > λ, show that as t→∞,

E(X(t))→
λ

ν − λ
.
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