1. Consider the regression model

$$Y_t = \beta_0 + \beta_1 X_{t-1} + \epsilon_t, \quad t = 0, \dots, N-1,$$

where X_t is a random process, and ϵ_t are independently identically distributed $N(0,\sigma^2)$, so that

$$cov(\epsilon_t, \epsilon_s) = \sigma^2 \delta_{t,s},$$

where

$$\delta_{t,s} = \begin{cases} 1 & \text{if } t = s \\ 0 & \text{if } t \neq s. \end{cases}$$

Assume that the joint distribution of $\boldsymbol{Y}=(Y_0,\ldots,Y_{N-1})^{\top}$ and $\boldsymbol{X}=(X_0,\ldots,X_{N-1})^{\top}$ depends on the full set of parameters $\boldsymbol{\lambda}=(\boldsymbol{\beta},\boldsymbol{\beta}')$, where $\boldsymbol{\beta}=(\beta_0,\beta_1)^{\top}$, and $\boldsymbol{\beta}'$ is a vector of additional parameters that appear in the joint distribution.

- (a) Write down the definition of the statement that " X_t is weakly exogenous for β ".
- (b) Prove that if X_t is weakly exogenous for β , then inference on β can be based on the conditional distribution of Y_t , that is

$$f(y|\mathbf{X},\boldsymbol{\beta}) = \prod_{t=0}^{N-1} f_{Y_t|Y_{t-1},X_t} \left(y_t | \mathbf{X}_t, Y_{t-1}; \boldsymbol{\beta} \right)$$
 (1)

(c) Assume now that

$$X_t = \theta X_{t-1} + \eta_t,$$

where η_t are independently identically distributed $N(0, \sigma^2)$, and

$$\operatorname{cov}\left(\epsilon_{t},\eta_{s}\right)=\rho\sigma^{2}\delta_{t,s},$$

where it is assumed that σ^2 and ρ are known. By rewriting the equation for Y_t in the form

$$Y_t = \beta_0 + \gamma_1 X_t + \gamma_2 X_{t-1} + \epsilon_t',$$

or otherwise, show that X_t is exogenous for $[eta_0,\ eta_1ho heta]^ op$.

M3S2 Page 2 of 6

2. The rate of return to speculation k time points ahead of the current time point t, rr_{t+k} can be modelled in terms of the logarithm of the spot exchange rate, s_t , and $g_{t,k}$, the logarithm of the k period forward rate, if set at time point t. We assume that the rate of return depends on t+k only. Specifically, suppose that

$$rr_{t+k} = s_{t+k} - g_{t,k}.$$
 (2)

- (a) Denote by J_t all the information available at time t. The efficient market hypothesis corresponds to the fact that "prices fully reflect all available information." By considering $E\left(\cdot|J_t\right)$, or otherwise, state what the efficient market hypothesis corresponds to in (2).
- (b) In order to test the efficient market hypothesis, a model for rr_{t+k} of the form

$$rr_{t+k} = s_{t+k} - g_{t,k} = \alpha_0 + \alpha_1 rr_t + \alpha_2 rr_{t-1} + \epsilon_{t+k}.$$

is to be used. Find $E\left(rr_{t+k}|J_{t}\right)$, based on the assumption $E\left(\epsilon_{t+k}|J_{t}\right)=0$. Explain how to state the efficient market hypothesis in terms of this model.

(c) Assume that ϵ_t , s_{t+k} and $g_{t,k}$ are mixing, so that subsequent estimation procedures are consistent. Is it reasonable to assume

$$E\left(\epsilon_{t+k}|\epsilon_{t+k-j}\right) = 0$$
 for all $j \in \mathbb{Z}$?

Justify your answer carefully.

- (d) Parameters $\alpha = (\alpha_0, \alpha_1, \alpha_2)$, that relate the systematic variation in the rate of return to speculation to previous rates of return, are to be estimated using least squares, based on a sample of size N of observed rates of return. Based on your answer to (c) write down the model for the covariance structure of ϵ_t , with justification of why this model is appropriate.
- (e) Denote an estimate of α by $\widehat{\alpha}$, and an estimate of $\text{var}(\widehat{\alpha})$ by \widehat{D} . Describe briefly how to test formally the efficient market hypothesis using the Wald statistic.

M3S2 Page 3 of 6

3. Consider two related time series, one, X_t , corresponding to the price of crude oil per gallon, the second, Y_t , corresponding to the Gross Domestic Product (GDP) of the US.

It is generally assumed that the behaviour of X_t and Y_t are linked, in that one of the two series causes the other.

- (a) Give the definition of the statement that "X Granger causes Y."
- (b) The joint behaviour of X_t and Y_t is to be modelled via

$$\begin{bmatrix} X_t \\ Y_t \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} + \begin{bmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{bmatrix} \begin{bmatrix} X_{t-1} \\ Y_{t-1} \end{bmatrix} + \begin{bmatrix} \alpha_3 & \alpha_4 \\ \beta_3 & \beta_4 \end{bmatrix} \begin{bmatrix} X_{t-2} \\ Y_{t-2} \end{bmatrix} + \begin{bmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{bmatrix},$$

where $\boldsymbol{\epsilon}_t = [\epsilon_{1t}, \epsilon_{2t}]^{\top}$ is assumed to be an innovation term.

In terms of the parameters of the model, give the conditions that must hold if X Granger causes Y.

- (c) Are there any reasons that, in practice, your answer to (b) would not be sufficient to assert Granger causality for two real data series? Explain your reasoning carefully.
- (d) Given realisations (x_1,\ldots,x_N) and (y_1,\ldots,y_N) from X_t and Y_t respectively, describe how to estimate the parameters of the model using a dynamic regression model with design matrix \mathcal{X} , and least squares, under the assumption that $\boldsymbol{\epsilon}_t = [\epsilon_{1t},\epsilon_{2t}]^{\top} \sim N\left(0,\sigma_{\epsilon}^2\boldsymbol{I}\right)$, independently across t. (Do NOT carry out the matrix calculations.)
- (e) Let $\epsilon_1 = [\epsilon_{13}, \dots, \epsilon_{1N}]^{\top}$ and $\epsilon_2 = [\epsilon_{23}, \dots, \epsilon_{2N}]^{\top}$ and construct the vector

$$oldsymbol{\epsilon} = \left[egin{array}{c} oldsymbol{\epsilon}_2 \ oldsymbol{\epsilon}_2 \end{array}
ight].$$

Under the assumption that we have $\widehat{\Omega}_N$, a non-singular estimator of the covariance of $\widehat{\gamma}$, where $\widehat{\gamma}$ is a parameter vector to be specified, construct a Wald test for a suitable null hypothesis to clarify any potential causal relationship using the model in (b).

M3S2 Page 4 of 6

- 4. Consider observing three time series corresponding to $X_t^{(1)}$, the FTSE 100 and $X_t^{(2)}$ and $X_t^{(3)}$, two individual company stock prices.
 - (a) Assume that a structural model

$$X_t^{(i)} = \alpha_i \mu_t^{(i)} + \epsilon_t^{(i)}, \quad i = 1, 2, 3,$$

is to be used , where $\mu_t^{(i)}$ represents the trend component (growth) of series i, whilst $\epsilon_t^{(i)}$ is the stochastic (irregular) component of series i.

Assume the following,

$$\mu_t^{(i)} \sim I(1).$$

 $\epsilon_t^{(i)} \sim I(0),$ are three mutually independent stationary processes.

 $\mu_t^{(i)}$ is independent of $\epsilon_t^{(j)}$ for all i and j.

 $\mu_t^{(i)}$ and $\mu_t^{(j)}$ may be dependent.

Recall that a process with a unit root is denoted I(1).

(i) If $\mu_t^{(i)}$, i=1,2,3 are three independent processes, determine whether

$$Y_t = \frac{X_t^{(2)}}{\alpha_2} + \frac{X_t^{(3)}}{\alpha_3} - \frac{2X_t^{(1)}}{\alpha_1}$$

is I(0) or I(1).

(ii) If $\mu_t^{(i)}=\mu_t,\;i=1,2,3$ are all equal to the *same* process, determine whether

$$Y_t = \frac{X_t^{(2)}}{\alpha_2} + \frac{X_t^{(3)}}{\alpha_3} - \frac{2X_t^{(1)}}{\alpha_1}$$

is I(0) or I(1). How would this assumption be interpreted?

- (iii) If the assumptions of (ii) are still valid, describe how to estimate $\boldsymbol{a} = \left[\alpha_1^{-1}, \alpha_2^{-1}, \alpha_3^{-1}\right]^{\mathsf{T}}$, with the normalisation $\alpha_1^{-1} = 1$.
- (b) Suppose that

$$X_t = \phi X_{t-1} + \epsilon_t,$$

where ϵ_t is assumed to be identically and independently distributed. Describe how to test the hypothesis that $\phi = 1$, based on a sample of length N.

5. Consider a credit portfolio as a collection of m transactions. Each of the m transactions corresponds to the party defaulting, or not defaulting. Let $L_i=1$ if obligator i defaults, and 0 otherwise. Consider the vector of random variables $\mathbf{L}=(L_1,\ldots,L_m)^{\top}$. Let $\mathbf{p}=(p_1,\ldots,p_m)^{\top}$ be the default probabilities for \mathbf{L} , i.e. $p_i=\mathsf{P}(L_i=1)$, where \mathbf{p} is modelled as a random vector, and consider the Bernoulli loss model where (p_1,\ldots,p_m) follow some distribution on $[0,1]^m$, and conditional on (p_1,\ldots,p_m) , the L_i are independent Bernoulli random variables.

Denote the loss, K, of $m{L}$ as

$$K = \sum_{i=1}^{m} L_i.$$

- (a) Suppose that p_i all take the *same* value P which is uniformly distributed on [0,1] i.e. $P \sim U(0,1)$.
 - (i) Find P $(L_1=l_1,\ldots,L_m=l_m)$, where $l_i\in\{0,1\}$ for $i=1,\ldots,m$.
 - (ii) Find the probability that k defaults occur where $0 \le k \le m$, i.e. find P(K = k).
- (b) Suppose now that, $\mathbf{P}=(P_1,\ldots,P_m)^{\top}$ and $\mathbf{P}\sim F(\mathbf{p})=\mathsf{P}(P_1\leq p_1,\ldots,P_m\leq p_m)$, with $\mathsf{E}\left(\mathbf{P}\right)=\boldsymbol{\mu_P}$ and $\mathsf{var}\left(\mathbf{P}\right)=\boldsymbol{\Sigma_P}$.
 - (i) Find the (marginal) covariance of L.
 - (ii) Determine when the covariance take its minimum and maximum possible values. Are either of those two scenarios realistic practically?
 - (iii) Explain how the variance of P affects the default covariance in (b)(i).

M3S2 Page 6 of 6