Imperial College London

UNIVERSITY OF LONDON
BSc and MSci EXAMINATIONS (MATHEMATICS)
MAY-JUNE 2004

This paper is also taken for the relevant examination for the Associateship.

M3S12 BIOSTATISTICS

Date: Tuesday, 8th June $2004 \quad$ Time: $2 \mathrm{pm}-4 \mathrm{pm}$

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.
SPLUS output, including limited statistical tables, is attached.

1. (a) The mortality rate in population A is to be assessed with respect to some standardizing population, S. Each population is stratified into $K+1$ age-specific strata, and the numbers of individuals and the numbers of deaths in each stratum are known for each population.

Explain how the mortality rate for population A may be reported after standardization via population S, giving specific details of the following concepts
(i) the crude mortality rate
(ii) the age-specific mortality rates
(iii) the directly standardized mortality rate
(iv) the indirectly standardized mortality rate
(v) the standardized mortality ratio (SMR)
(b) The following table contains information on the structure and mortality rates stratified by age in a clinically interesting population A (those diagnosed with a particular psychiatric condition) and in the general population (derived from census data) in a city in North America.

$$
\mathrm{Pop}^{\mathrm{n}} \mathrm{~A}
$$

City Pop ${ }^{n}$

AGE GROUP	No. Deaths	Stratum size	No. Deaths	Stratum size
$0-20$ years	5	500	240	40000
21-40 years	25	1000	300	40000
$41-60$ years	20	400	160	32000
61-80 years	10	100	100	16000
TOTAL	60	2000	800	128000

Compute

(i) the directly standardized mortality rate
(ii) the indirectly standardized mortality rate
for population A, using the general city population as the standardizing population. Leave your answers as fractions with denominator 3200.

Comment on the relationship between the psychiatric condition and mortality.
2. (a) (i) By using a suitable tree diagram and probability notation, outline the structure of a typical observational study designed to discover the relationship between an exposure risk factor and a given clinical outcome. Identify three measures of effect of interest.
(ii) Describe the key feature that distinguishes a case-control study from a cohort study, giving your explanation in terms of assumptions made about certain conditional probabilities.
(iii) In a conventional cohort study (two exposure levels, two outcome categories), the observed data may be summarized in a 2×2 table with entries $\left(n_{11}, n_{12}, n_{21}, n_{22}\right)$. Show that, in such a study, the estimated standard error of the log relative risk $(\log R R)$ of outcome 1 in the two exposure categories is approximately

$$
\sqrt{\left(\frac{1}{n_{11}}-\frac{1}{n_{11}+n_{21}}\right)+\left(\frac{1}{n_{12}}-\frac{1}{n_{12}+n_{22}}\right)}
$$

Use the following approximation: if

$$
U_{n} \stackrel{A}{\sim} N\left(\mu, \frac{\sigma^{2}}{n}\right),
$$

g is some differentiable function with derivative g^{\prime}, and $V_{n}=g\left(U_{n}\right)$ then

$$
V_{n} \stackrel{A}{\sim} N\left(g(\mu), \frac{\sigma^{2}\left\{g^{\prime}(\mu)\right\}^{2}}{n}\right)
$$

where $g^{\prime}(\mu) \neq 0$.
(b) The following tables represent the results of a case-control study into the relationship between a binary exposure factor (smoking in the home) and the incidence of asthma in children from households located in urban or rural locations.

	URBAN		RURAL	
	SMOKE	NON-SMOKE	SMOKE	NON-SMOKE
ASTHMA	5	20	20	100
NO ASTHMA	600	1100	150	1400

On the basis of these data, assess whether there is any evidence of increased risk of asthma due to smoking in the home, and whether there is any confounding or effect modification due to the household location.
3. (a) (i) Describe how the Analysis of Variance (ANOVA) approach is used to explore the relationship between a continuously varying response variable and a number of factor predictors. In particular, give details of the mathematical modelling assumptions, the sum of squares decomposition, key distributional results, and hypothesis testing.
(ii) Write down the statistical model behind a Two-Way Analysis of Variance with Interaction, where the two factor predictors have K and L levels, for data in a fullfactorial design, with an equal number of replicates, m, in each cross-category. Give your answer in the form

$$
y_{k l j}=\text { MEAN FUNCTION }+ \text { RANDOM ERROR }
$$

where k and l index the levels of the two factors respectively, and j indexes replicate number.
(iii) Give the sum-of-squares decomposition for this model, explaining the role of each of the four contributions to the total sum of squares.
(b) An investigation into the variability of blood pressure for a cohort of individuals suffering from hypertension was carried out. Each member of the cohort was agecategorized into one of a number of age categories (denoted AGECAT), and then given one of a number of drug treatments (denoted DRUG), one of which was a control group. An equal number of individuals, m, were recruited for each cross-classification.

The SPLUS output below gives details of a Two-Way Analysis of Variance in the form of an ANOVA table. Three entries have been omitted.

	Df	Sum of Sq	Mean Sq	F Value	$\operatorname{Pr}(\mathrm{F})$
DRUG	3	538.74	179.581	10.6162	0.00001810
AGECAT	5	10888.18	2177.637	128.7345	0.00000000
DRUG:AGECAT	$* *$	$* * * * * *$	37.580	2.2216	$* * * * * * * * *$
Residuals 48	811.95	16.916			
Total 71	12802.57				

(i) Identify the number of levels of drug treatment (including the control), and the number of age categories.
(ii) Find the number of replicates, m.
(iii) Find the three omitted values, using the Fisher - F distribution tables on page 7.
(iv) Summarize the results of the analysis.
4. (a) This question concerns a logistic regression for a binary response data set with a single continuous predictor variable. Denote the observed response and predictor pairs $\left\{\left(y_{i}, x_{i}\right), i=1, \ldots, n\right\}$, where the assumed model for the response variable has

$$
Y_{i} \sim \operatorname{Bernoulli}\left(\theta_{0 i}\right)
$$

for naive parameter $\theta_{0 i}$.
(i) Write this probability model in exponential-dispersion family form.
(ii) Find the canonical link function for this GLM.
(iii) Assuming a linear predictor of the form

$$
\boldsymbol{x}_{\boldsymbol{i}}^{T} \boldsymbol{\beta}=\beta_{0}+\beta_{1} x_{i}
$$

and the canonical link function, derive the two score equations used for the maximum likelihood estimation of β_{0} and β_{1}.
(b) The SPLUS output on page 8 summarizes the analysis of deviance results of a logistic regression analysis of data from an in vitro fertilization (IVF) study. In the study, 208 mothers underwent a cycle of IVF, and the outcome (successful/unsuccessful pregancy, $Y=1 / 0$) was recorded. The aim of the study was to assess whether the level of a hormone, progesterone, measured in the mother three days before the beginning of the cycle, could be used to predict whether the IVF cycle will be successful. It was also believed that the maternal age was potentially an important predictor of the success of the IVF cycle; this variable was recorded, and discretized into five age categories.

In the SPLUS output, the progesterone level is denoted X and maternal age category is denoted MATAGE.
(i) Summarize the results of the analysis of deviance, and report the most appropriate model.
(ii) Comment on the adequacy of the selected model
(iii) By considering (a) (i), (ii) and (iii), briefly describe three variations of the model that may lead to more appropriate inference about the dependence of response on the predictors.
5. (a) A two-way, $I \times J$ contingency table of count data is assumed to have entries $n_{i j}$, that are realizations of independent random variables $N_{i j}$ that are Poisson distributed, that is

$$
N_{i j} \sim \operatorname{Poisson}\left(\lambda_{i j}\right) \quad i=1, \ldots, I \text { and } j=1, \ldots, J
$$

Find the likelihood for the entries in the table conditional on the row totals $\left(N_{1}, N_{2}, \ldots, N_{I}\right)$ taking their observed values $\left(n_{1 .}, n_{2}, \ldots, n_{I}\right)$ where

$$
n_{i .}=\sum_{j=1}^{J} n_{i j}
$$

(b) The following data are from a small cohort study carried out to discover the relationship between the exposure to radiation of the fathers of children employed at a nuclear power plant, and incidences of leukemia, collated over a ten year period

	EXPOSED	NON-EXPOSED
LEUKEMIA CASE	12	8
HEALTHY	24	100

Is there any statistical evidence of association or dependence between the row and column factors ? Justify your answer, commenting on the validity of the chosen statistical test.
(Note the chi-squared distribution quantiles given at the bottom of page 9)
Explain briefly how and why conditioning might be used in the analysis of the data in this table.

Question 3: Fisher - F tables

The table below contains probabilities in the Fisher $-F$ cumulative distribution function with $d f_{1}$ and 48 degrees of freedom, where $d f_{1}$ is the first entry in each row. Specifically, the entries in the table are

$$
p=P[X \leq x]
$$

when

$$
X \sim \text { Fisher }\left(d f_{1}, 48\right)
$$

and x is given by the column heading. For example, if $d f_{1}=7$ and $x=2.60$, then

$$
p=0.977
$$

df1	2.00	2.10	2.20	2.30	2.40	2.50	2.60	2.70	2.80	2.90	3.00
1	0.836	0.846	0.855	0.864	0.872	0.880	0.887	0.893	0.899	0.905	0.910
2	0.854	0.866	0.878	0.889	0.898	0.907	0.915	0.923	0.929	0.935	0.941
3	0.873	0.887	0.900	0.911	0.921	0.929	0.937	0.944	0.950	0.956	0.960
4	0.890	0.905	0.917	0.928	0.937	0.945	0.952	0.959	0.964	0.969	0.973
5	0.904	0.918	0.930	0.941	0.949	0.957	0.963	0.969	0.973	0.977	0.980
6	0.916	0.929	0.941	0.950	0.959	0.965	0.971	0.976	0.980	0.983	0.986
7	0.925	0.938	0.949	0.958	0.966	0.972	0.977	0.981	0.984	0.987	0.989
8	0.933	0.946	0.956	0.964	0.971	0.977	0.981	0.985	0.987	0.990	0.992
9	0.940	0.952	0.962	0.969	0.975	0.980	0.984	0.987	0.990	0.992	0.994
10	0.946	0.957	0.966	0.973	0.979	0.983	0.987	0.990	0.992	0.994	0.995
11	0.951	0.961	0.970	0.977	0.982	0.986	0.989	0.991	0.993	0.995	0.996
12	0.955	0.965	0.973	0.979	0.984	0.988	0.991	0.993	0.994	0.996	0.997
13	0.959	0.968	0.976	0.982	0.986	0.989	0.992	0.994	0.995	0.996	0.997
14	0.962	0.971	0.978	0.983	0.988	0.991	0.993	0.995	0.996	0.997	0.998
15	0.965	0.973	0.980	0.985	0.989	0.992	0.994	0.995	0.997	0.997	0.998
16	0.967	0.976	0.982	0.987	0.990	0.993	0.995	0.996	0.997	0.998	0.998
17	0.969	0.977	0.983	0.988	0.991	0.993	0.995	0.996	0.997	0.998	0.999
18	0.971	0.979	0.985	0.989	0.992	0.994	0.996	0.997	0.998	0.998	0.999
19	0.973	0.980	0.986	0.990	0.993	0.995	0.996	0.997	0.998	0.999	0.999
20	0.975	0.982	0.987	0.991	0.993	0.995	0.997	0.997	0.998	0.999	0.999

Question 4: SPLUS Output Page 1

```
>options(contrasts=c(''contr.treatment'','(contr.poly''))
>summary(glm(Y~1,data=ivf.data,family=binomial))
Coefficients:
    Value Std. Error t value
(Intercept) 0.3695331 0.1410489 2.619894
```

Null Deviance: 281.3678 on 207 degrees of freedom Residual Deviance: 281.3678 on 207 degrees of freedom
>summary (glm($Y^{\sim} X$, data=ivf.data,family=binomial))
Coefficients:
Value Std. Error t value
(Intercept) -0.81382457 0.33957134-2.396623
$\begin{array}{llll}X \quad 0.05298365 & 0.01450141 & 3.653690\end{array}$

Null Deviance: 281.3678 on 207 degrees of freedom Residual Deviance: 264.4305 on 206 degrees of freedom
> summary(glm(Y~MATAGE,data=ivf.data,family=binomial))
Coefficients:

	Value	Std. Error	t value
(Intercept)	0.7777046	0.2929894	2.6543779
MATAGE2	0.1026541	0.4111418	0.2496805
MATAGE3	-0.8954876	0.4515510	-1.9831371
MATAGE4	-0.8730147	0.4257902	-2.0503400
MATAGE5	-0.9783753	0.5365286	-1.8235285

Null Deviance: 281.3678 on 207 degrees of freedom Residual Deviance: 270.1133 on 203 degrees of freedom

Question 4: SPLUS Output Page 2

```
>summary(glm(Y~X+MATAGE,data=ivf.data,family=binomial))
```

Coefficients:

```
            Value Std. Error t value
(Intercept) -0.65804253 0.43965622 -1.4967206
            X 0.07128228 0.01708112 4.1731628
    MATAGE2 0.16393160 0.42926749 0.3818868
    MATAGE3 -1.53313554 0.50938469 -3.0097794
    MATAGE4 -1.17467879 0.45816854 -2.5638574
    MATAGE5 -0.89797446 0.55375000 -1.6216243
```

 Null Deviance: 281.3678 on 207 degrees of freedom
 Residual Deviance: 245.6008 on 202 degrees of freedom
> summary (glm(Y~X*MATAGE,data=ivf.data,family=binomial))
Coefficients:
Value Std. Error t value
(Intercept) -0.191771684 0.72770966-0.26352774
X $0.0467750260 .03398600 \quad 1.37630282$
MATAGE2 -0.476663278 1.01051003-0.47170564
MATAGE3 -1.513788351 1.15459445 -1. 31109963
MATAGE4 -3.388798987 1.39742806-2.42502572
$\begin{array}{llll}\text { MATAGE5 } & 0.021827867 & 1.49395337 & 0.01461081\end{array}$
$\begin{array}{lllll}\text { X:MATAGE2 } & 0.034672757 & 0.05034709 & 0.68867449\end{array}$
$\begin{array}{lllll}\text { X:MATAGE3 } & 0.007105887 & 0.04458499 & 0.15937845\end{array}$
X:MATAGE4 $0.101334251 \quad 0.060999631 .66122738$
X:MATAGE5 -0.048402837 0.07326309 -0.66067149

Null Deviance: 281.3678 on 207 degrees of freedom Residual Deviance: 240.5079 on 198 degrees of freedom

```
> round(qchisq(0.95, df = c(1, 2, 3, 4, 5, 6, 7, 8)), 4)
```

[1] $3.8415 \quad 5.9915 \quad 7.8147 \quad 9.4877 \quad 11.070512 .591614 .067115 .5073$

