UNIVERSITY OF LONDON
 IMPERIAL COLLEGE LONDON

BSc and MSci EXAMINATIONS (MATHEMATICS) MAY-JUNE 2003

This paper is also taken for the relevant examination for the Associateship.

M3S12 BIOSTATISTICS

DATE: Wednesday, 28th May 2003 TIME: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used. Statistical tables will not be available.

1. a) In an epidemiological study, exposure is a binary risk factor, and individuals in the study are categorized as exposed or not exposed to the risk factor, denoted E and E^{\prime} respectively. Disease incidence for an individual is denoted F (affected) and its complement F^{\prime} (not affected).

Identify the principal difference, in terms of exposure, incidence and inclusion in the study between
i) observational and experimental epidemiological studies,
ii) cohort and case-control studies.

In terms of the events E and F, and conditional probability notation, define the following measures of effect; in each case, state whether the quantity is estimable from a cohort study and a case-control study - where appropriate, give the form of the estimate of the quantity derived from a sample of data cross-categorized in the usual 2×2 table fashion.
iii) the incidence probability in the exposed group,
iv) the relative risk of disease in the exposed/unexposed groups,
$v)$ the odds-ratio.
b) Data from a cohort study involving the risk factor age and its impact on a particular psychiatric disorder for a particular population are available. There are five age categories: for each category, let D denote the number of deaths, and N denote the total number of person-years on study.

AGE GROUP	D	N
$10-19$	20	4000
$20-29$	150	6000
$30-39$	120	4000
$40-49$	80	4000
$50+$	10	2000

i) Compute and report in an appropriate form the crude incidence rate of the disorder.
i) Explain and illustrate the difference between the crude, specific, and standardized incidence rates in this context.
ii) Give an expression for the standardized incidence rate for a hypothetical standardizing population for which the breakdown across the five age categories is $(25 \%, 30 \%, 25 \%, 10 \%, 10 \%)$.
2. In a small cohort study of patients who have undergone cruciate ligament reconstruction surgery, the effectiveness of two types of operation are to be compared. Here, exposure E corresponds to operation type I (patella graft), and E^{\prime} corresponds to operation type II (hamstring graft); disease incidence F corresponds to the failure of the reconstruction within two years of the surgery. The data can be denoted in the usual cross-categorized 2×2 table fashion (exposure status in the columns, health status in the rows) as $\left(n_{11}, n_{12}, n_{21}, n_{22}\right)$, with row totals ($n_{1 .}, n_{2}$.) and column totals ($n_{.1}, n_{.2}$); the data available are $n_{11}=44, n_{12}=26, n_{21}=1002, n_{22}=247$. Denote by γ_{1} and γ_{0} the exposure rates in the disease (case) and healthy (control) groups respectively. Throughout this question, the notation \log refers to natural logarithm.
i) Show that the maximum likelihood estimate of γ_{1} is $\widehat{\gamma}_{1}=n_{11} / n_{1}$. State the asymptotic normal distribution of the corresponding maximum likelihood estimator, and the form of the estimated standard error for $\widehat{\gamma}_{1}$.
ii) The relative exposure rate is $\tau=\gamma_{1} / \gamma_{0}$. Find the maximum likelihood estimate of $\tau, \widehat{\tau}$, and show that the estimated standard error for $\log \tau$ is

$$
\text { s.e. }(\log \widehat{\tau})=\sqrt{\frac{1}{n_{11}}-\frac{1}{n_{1}}+\frac{1}{n_{21}}-\frac{1}{n_{2} .} .}
$$

Use the result that for random variables U_{n} and $V_{n}=g\left(U_{n}\right)$ for differentiable function g,

$$
U_{n} \dot{\sim} N\left(\mu, \frac{\sigma^{2}}{n}\right) \text { then } V_{n} \dot{\sim} N\left(g(\mu), \frac{\sigma^{2}\left\{g^{\prime}(\mu)\right\}^{2}}{n}\right) .
$$

iii) State (without proof) the form of the estimated standard error for the \log odds ratio, $\log \psi$.
iv) Compute an approximate 95% confidence interval for the log odds ratio using the following numerical results:

$$
\log \widehat{\psi}=-0.8743, \quad \text { s.e. }(\log \widehat{\psi})=0.2574
$$

Hence assess the evidence for a difference in the outcome for the two types of surgery.
v) Derive the Bayesian posterior distribution of γ_{1} if the prior distribution is a $\operatorname{Beta}\left(\alpha_{1}, \beta_{1}\right)$ distribution.
3. a) Binary incidence data, y_{i} for $i=1, \ldots, n$, are to be collected, where $y_{i}=1$ indicates that individual i was a sufferer from the disease concerned. The dependence of the incidence probability on a predictor is to be studied using a particular Generalized Linear Model.
i) Describe the key aspects of a logistic regression model for the individual level data. Outline methods for hypothesis testing of the importance of the predictor.
ii) Suppose that data for a single continuous predictor is recorded. Give details of the linear predictors for the three principal models that may be fitted to the response y, namely the null, main effect and saturated models.
iii) Derive the form of the deviance for the main effect model logistic regression for response y. Outline how deviance can be used to assess and compare the fit of a GLM.
b) A method of predicting whether a pregnant woman will require a Caesarian section $(y=1)$ as opposed to a natural birth $(y=0)$ is required. Body mass index (BMI), that is weight/(height) ${ }^{2}$, at the beginning of pregnancy is thought to be a good predictor for the eventual childbirth method.

In a study, the childbirth method for $n=920$ women was recorded, along with their initial BMI, which was discretized into the four categories, $[0,20),[20,30),[30,40)$ and $[40, \infty)\left(\right.$ units $\left.\mathrm{kg} / \mathrm{m}^{2}\right)$. A summary of the data is presented below; s_{i} is the total number of women who had a Caesarian section, and n_{i} is the number of women in the i th BMI subgroup.

BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	$[0,20)$	$[20,30)$	$[30,40)$	$[40, \infty)$
s_{i}	49	97	14	1
n_{i}	425	450	43	2

An SPLUS analysis of these data is given in OUTPUT 1 (page 7); the treatment-contrasts parameterization is used; the Coefficients output are baseline (Intercept) and differences from baseline on the linear predictor scale.
i) Is BMI a useful predictor of childbirth method? Justify your answer.
ii) Comment on the fit of the main effect model.
ii) Would the analysis be improved if individual-level BMI data was retained, so that BMI could be included in the model as a continuous predictor? Justify your answer.
4. A Poisson model is deemed relevant for the incidence data below.

Count y	Person-years d	Exposure E	Age group A	Age category
1	15382.27	0	0	$[0,25)$
6	19946.65	1	0	$[0,25)$
0	31413.31	0	1	$[25,40)$
16	26503.54	1	1	$[25,40)$
1	33727.60	0	2	$[40,60)$
9	16407.93	1	2	$[40,60)$
2	38069.95	0	3	60^{+}
7	36492.51	1	3	60^{+}

The counts y are the numbers of cases of a rare form of cancer, the person-years data d relate (approximately) to the total time on study of a cohort accumulated over a number of years, exposure E has two levels, with level 1 indicating close proximity (within 2 km) to a commercial incinerator site, and age group A is a potential confounder having four levels. The expected value of Y is thought to depend linearly on d.
a) i) Write down a generalized linear model (GLM) appropriate for the analysis of these data. Explain the importance of an offset term in the model.
ii) List the number of parameters that each of the following models (defined in standard notation) contains:

$$
N U L L, E, A, E+A, E * A
$$

(you may write down the numbers without further justification). Identify the saturated model.
iii) Derive the general form of the deviance residual for this model.
b) An SPLUS analysis of deviance of these data is summarized on pages 8 and 9 .
i) Find the most appropriate model (in terms of deviance) for the data. Justify your conclusion.
ii) Is there any evidence of overdispersion in the data (relative fit of your preferred model) ? Justify your answer.
iii) Briefly outline the quasilikelihood approach to modelling overdispersed data.
5. a) Suppose
that $\left\{X_{i j}: i=1,2\right.$ and $\left.j=1,2\right\}$ are independent Poisson random variables with parameters $\left\{\lambda_{i j}: i=1,2\right.$ and $\left.j=1,2\right\}$ respectively.
i) Consider the new random variables $\left\{Y_{1}, Y_{2}, Y_{3}, Y_{4}\right\}$ where
$Y_{1}=X_{11} \quad Y_{2}=X_{12} \quad Y_{3}=X_{21} \quad Y_{4}=X_{11}+X_{12}+X_{21}+X_{22}$
Find the joint conditional mass function of $\left(Y_{1}, Y_{2}, Y_{3}\right)$ given that $Y_{4}=n_{\text {.. }}$ for some n.. >0, and explain the relevance of this result for fitting models to contingency table data.
ii) Suppose that a model that presumes symmetry in the 2×2 table of $X \mathrm{~s}$, that, is, that

$$
\lambda_{12}=\lambda_{21}=\lambda,
$$

say, is to be considered. Derive the maximum likelihood estimates of the three parameters in the model $\left(\lambda_{11}, \lambda_{22}, \lambda\right)$.
b) The Pearson Chi-Squared goodness-of-fit statistic for a general contingency table containing Poisson data with cell entries $\left\{n_{i j}, i=1, \ldots, I, j=1, \ldots, J\right\}$ takes the form

$$
X^{2}=\sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(n_{i j}-\widehat{n}_{i j}\right)^{2}}{\widehat{n}_{i j}}
$$

where $\widehat{n}_{i j}$ is the fitted cell entry for cell (i, j) under the model, and where, asymptotically, if the fitted model is adequate

$$
X^{2} \dot{\sim} \chi_{I J-d}^{2}
$$

where, here, d is the number of parameters estimated in the model.
i) Find the form of X^{2} and its asymptotic distribution for the symmetry model in a) ii).
ii) Use this X^{2} statistic to test the symmetry model in the following 2×2 table; the data concerned relate to the health status (Prone to Colds/Not Prone to colds) at the beginning of the trial and the end of the follow up, for each of 200 school children.

		End of Study	
Not Prone	Prone		
Start of Study	Not Prone	160	10
	Prone	20	10

OUTPUT 1 FOR QUESTION 3

```
summary(glm(Y ~ factor(BMI.GROUP), family = binomial, data = bmi.data))
Call: glm(formula = Y ~ factor(BMI.GROUP), family = binomial, data = bmi.data)
Coefficients:
\begin{tabular}{rrlr} 
& Value & Std. Error & t value \\
(Intercept) & -2.0377670 & 0.1517525 & -13.428228 \\
factor(BMI.GROUP)2 & 0.7460099 & 0.1901864 & 3.922519 \\
factor(BMI.GROUP)3 & 1.3095285 & 0.3590824 & 3.646875 \\
factor(BMI.GROUP)4 & 2.0377670 & 1.4223322 & 1.432694
\end{tabular}
    Null Deviance: 853.2566 on 919 degrees of freedom
Residual Deviance: 829.9679 on 916 degrees of freedom
```

Table: 0.95 quantiles of Chisquared(DF) distribution

DF	Quantile
1	3.8415
2	5.9915
3	7.8147
4	9.4877
5	11.0705
915	986.4829
916	987.5214
917	988.5598
918	989.5982
919	990.6366
920	991.6750

DEVIANCE SUMMARY FOR QUESTION 4

MODEL	$D F$	D	$\triangle D F$	$\triangle D$	$\chi_{\triangle D F}^{2}(0.95)$
$N U L L$	7	49.53132	-	-	-
E	6	11.37614	1	38.15518	3.8415
A	4	45.35049	3	4.18083	7.8147
$E+A$	3	5.58927	4	43.94205	9.4877
$E * A$	0	0.000	7	49.53132	14.0671

OUTPUT 2 FOR QUESTION 4

NULL MODEL

	Value	Std.Error	t value
(Intercept)	-8.554285	0.1536309	-55.68076

Null Deviance: 49.53132 on 7 degrees of freedom Residual Deviance: 49.53132 on 7 degrees of freedom

MAIN EFFECT MODEL E

	Value	Std.Error	t value
(Intercept)	-10.297159	0.4999313	-20.597149
factor(E)	2.428335	0.5255917	4.620193

Null Deviance: 49.53132 on 7 degrees of freedom
Residual Deviance: 11.37614 on 6 degrees of freedom

MAIN EFFECT MODEL A

	Value	Std.Error	t value
(Intercept)	-8.52654725	0.3779645	-22.55912373
factor(A)1	0.33237227	0.4531495	0.73347158
factor(A)2	0.00664716	0.4927853	0.01348896
factor(A)3	-0.49562051	0.5039526	-0.98346647

Null Deviance: 49.53132 on 7 degrees of freedom Residual Deviance: 45.35049 on 4 degrees of freedom

MAIN EFFECTS MODEL E+A

	Value	Std.Error	t value
(Intercept)	-10.5133734	0.6229572	-16.8765590
factor(E)	2.4969047	0.5268842	4.7390007
factor(A)1	0.5109059	0.4533307	1.1270049
factor(A)2	0.4571701	0.4947232	0.9240927
factor(A)3	-0.3735754	0.5039551	-0.7412872

Null Deviance: 49.53132 on 7 degrees of freedom Residual Deviance: 5.558927 on 3 degrees of freedom
(c) 2003 University of London

M3S12
Page 9 of 9

