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1. (i) In the context of a zero-sum game between two players A and B, define an equaliser

strategy.

(ii) Solve the two-person zero-sum games with the following pay-off matrices. The (i, j)

entry in each case is the gain to player A when A plays pure strategy ai and B plays pure

strategy bj.

(a)

(
1 3 5

5 2 1

)

(b)




x 0 0

y x 0

y y x



 , where x and y are positive real numbers.

2. (i) Define the lower and upper values, vL and vU respectively, of a two-person zero-sum

game in which the gain to player A when A plays randomised strategy α and player B

plays randomised strategy β is g(α, β).

(ii) Show that if vL = vU and if there exist randomised strategies α
∗ and β∗ for A and B

respectively such that

g(a, β∗) ≤ g(α∗, b)

for all pure strategies a and b for A and B repectively, then

sup
α
g(α, β∗) ≤ g(α∗, β∗) ≤ inf

β
g(α∗, β).

(iii) Deduce that

vL = vU = g(α
∗, β∗)

and that α∗ and β∗ are maximin and minimax strategies for A and B respectively.

You may assume that sup
α
g(α, β) = sup

a
g(a, β) for all randomised strategies β for B.

(iv) Without telling player A, player B chooses a cell of a 3× 3 square array. Player A can
then try to guess which of the 9 cells B has chosen, by naming two adjacent cells in

either the same row or in the same column of the array. If either of these two cells is a

correct guess then A wins a point and B loses a point. Otherwise neither wins or loses

any points.

Let α∗p denote the randomised strategy for A which gives probability p (0 ≤ p ≤
1
8
)

to each pair of cells which do not include the middle cell of the array and probability

q = 1−8p
4
to each pair of cells which do include the middle cell. Let β∗ denote the

randomised strategy for B which gives probability one-fifth to each of the four corner

cells and to the middle cell of the array.

By finding suitable values of p and q, solve the game.
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3. (i) In a cooperative two-person game define (a) a jointly inadmissible pair of strategies and

(b) an equilibrium pair of strategies, for the two players, A and B.

(ii) Two builders, A and B, are competing for a contract to construct a new office block.

Each can bid either $L million or $H million for the job, where L < H. The builder

with the lower bid will win the contract and will be paid the value of their bid once the

building is finished. If both bids are equal, a fair coin is tossed to decide who should win

the contract. Each builder reckons that the real cost of completing the job is $c million,

where 0 < c < 2L−H. They decide to collaborate.

(a) Construct the table of pay-offs to the two builders and describe the pay-off set.

(b) Identify the Pareto Optimal set.

(c) Find a pair of strategies in equilibrium.

(d) Find the builders’ security levels and identify the negotiation set.

(e) Show that each builder cannot expect to make a profit of more than $m million,

where

m =
(L− c)(3H − 2L− c)

2(H − c)
.

4. (i) Describe, with reasons, the features of the function

u(z) = 1− exp(−λz) (z ≥ 0),

where λ is a positive constant, which might make it suitable to represent the utility of

money ($z). How would you interpret the constant λ?

(ii) An individual A with assets of $M (M > 0) has the above utility function u(z) for

money. If A is offered a lottery L which gives a reward of $R with probability p and a

loss of $R with probability 1 − p, where R < M and 0 < p < 1, show that A will find
L attractive provided

λ ≤
1

R
log

p

1− p
.

(iii) Suppose instead that each of two people has utility function u(z) for money and current

assets of $M . They have the opportunity to take part in a lottery L′ in which they share

any gains or losses when each independently plays the lottery L. Show that for each

person L′ is attractive provided

λ ≤
2

R
log

p

1− p
.
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5. (i) Observations X1, X2 . . . , Xn have a joint density function depending on an unknown

scalar parameter θ with prior density π(θ). Explain what is meant by (a) the risk function

of a decision rule d for estimating θ and (b) the Bayes risk of d with respect to π(θ),

when the loss function is L(θ, d).

(ii) Two independent observations are made: X is Poisson with mean θ > 0 and Y is Poisson

with mean 2θ. The decision rule da,b for estimating θ is given by

da,b(x, y) = aX + bY,

where a and b are constants.

(a) Find the risk function for da,b for estimating θ under squared error loss and show

that when θ has a prior exponential distribution with mean one, then the Bayes risk

of da,b is minimised with respect to a and b when a = b =
2
7
.

(b) If θ has the prior distribution in (ii)(a) above, find the Bayes Rule dB for estimating

θ and show that the ratio of the Bayes risk of d 2
7
, 2
7
to that of dB is 8:7.
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Distribution f(x | θ) x ∈ X θ ∈ Θ

Bernoulli(θ) θx(1− θ)1−x x = 0, 1 0 < θ < 1

(Discrete) Uniform(k)
1

k
x = 1, 2, . . . , k

Binomial(n, θ)

(
n

x

)

θx(1− θ)n−x x = 0, 1, . . . , n 0 < θ < 1

Poisson(λ)
λx e−λ

x!
x = 0, 1, 2, . . . λ > 0

Geometric(θ) (1− θ)x−1θ x = 1, 2, . . . 0 < θ < 1

NegativeBinomial(n, θ)

(
x+ n− 1
n− 1

)

(1− θ)xθn x = 0, 1, 2, . . . 0 < θ < 1, n = 1, 2, . . .

Uniform(α, β)
1

β − α
α < x < β α < β

Exponential(λ) λ exp(−λx) x > 0 λ > 0

Gamma(ν, λ)
1

Γ(ν)
λ(λx)ν−1 exp(−λx) x > 0 λ > 0, ν > 0

Cauchy(α, β)
1

πβ {1 +
(
x−α
β

)2}
−∞ < x <∞ β > 0

N(μ, σ2)
1

√
2πσ2

exp

{

−
1

2

(
x− μ
σ

)2}

−∞ < x <∞ σ2 > 0

Beta(α, β)
1

B(α, β)
xα−1(1− x)β−1 0 < x < 1 α > 0, β > 0

Weibull(α, β) βαxα−1 exp(−βxα) x > 0 α > 0, β > 0

χ2k
1

2k/2Γ(k/2)
x(k/2)−1 exp(−12x) x > 0 k = 1, 2, . . .

tm
Γ((m+ 1)/2)

Γ(m/2)
√
πm

(
1 +
x2

m

)−(m+1)/2 −∞ < x <∞ m = 1, 2, . . .

Pareto(θ)
θ

xθ+1
x > 1 θ > 0
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Distribution E(X) var (X) GX(z) or MX(t)

Bernoulli(θ) θ θ(1− θ) 1− θ + θz

(Discrete) Uniform(k) (k + 1)/2 (k2 − 1)/12 z(1− zk)/{k(1− z)}

Binomial(n, θ) nθ nθ(1− θ) (1− θ + θz)n

Poisson(λ) λ λ exp{−λ(1− z)}

Geometric(θ)
1

θ

1− θ
θ2

θz

1− z(1− θ)

NegativeBinomial(n, θ)
n(1− θ)
θ

n(1− θ)
θ2

(
θz

1− z(1− θ)

)n

Uniform(α, β) 1
2(α+ β)

1
12(β − α)

2 (eβt − eαt)/{(β − α)t}

Exponential(λ) 1/λ 1/λ2 λ/(λ− t)

Gamma(ν, λ) ν/λ ν/λ2 {λ/(λ− t)}ν

Cauchy none none none

N(μ, σ2) μ σ2 exp(μt+ 12σ
2t2)

Beta(α, β)
α

α+ β

αβ

(α+ β)2(α+ β + 1)
1F1(α;β; t)

Weibull(α, β) β−1/αΓ

(

1 +
1

α

)

β−2/α
{

Γ

(

1 +
2

α

)

−

[

Γ

(

1 +
1

α

)]2}

none

χ2k k 2k (1− 2t)−k/2

tm 0
m

m− 2
none

Pareto(θ)
θ

θ − 1
θ

(θ − 1)2(θ − 2)
none
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