Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2007

This paper is also taken for the relevant examination for the Associateship.

M3S10/M4S10

Design of Experiments & Surveys

Date: Thursday, 31st May

Time: 2 pm – 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. (i) Define a *balanced incomplete block design* (BIBD).

A cyclic block design D_n $(n \ge 3)$ is generated from the initial blocks $B_j = \{0, j\}$ for j = 1, 2, ..., m, where n = 2m + 1 and all arithmetic is modulo n.

- (ii) Construct D_7 .
- (iii) Show that D_n has $\binom{n}{2}$ distinct blocks.
- (iv) Show that D_n is a BIBD and determine its parameters.
- (v) Show that there exists an $\binom{n}{2} \times 2$ rectangular array of n symbols such that the rows form a BIBD and each column contains each symbol exactly m times.
- (vi) Describe an experimental situation where the array found in part (v) might be useful.

- 2. (i) Define (a) an $n \times n$ latin square and (b) an $n \times n$ graeco-latin square.
 - (ii) If L_1, L_2, \ldots, L_m are $n \times n$ latin squares such that each distinct pair forms a graeco-latin square, prove that $m \le n 1$.
 - (iii) Find four 5×5 latin squares such that each pair forms a graeco-latin square.
 - (iv) State (without proof) MacNeish's Theorem.
 - (v) Prove that if n is not congruent to 2 modulo 4, then there exists an $n \times n$ graeco-latin square.

3. (i) In the context of a 2^n factorial experiment explain briefly what is meant by (a) an effect is aliased with the mean and (b) an effect is confounded with the block effects.

In a 2^6 factorial experiment with factors A, B, C, D, E, and F, only 16 experimental units are available and these are arranged in a 4×4 square array with the following allocation of treatment combinations:

bcd	adef	ab	cef
abcef	1	bdef	acd
ae	bcf	cde	abdf
df	abcde	acf	be

- (ii) Which effects are aliased with the mean?
- (iii) Show that no two main effects are aliased with each other but that each of 3 main effects is aliased with a two-factor interaction.
- (iv) What advice about the labelling of the 6 factors would you give to the experimenter?
- (v) Which effects are confounded with the row effects?
- (vi) Explain why no main effect is confounded with either the row or the column effects.
- (vii) Show that the 16 treatment combinations cannot be arranged in a 2×8 rectangular array such that no main effect is confounded with either the row or the column effects.

4. For $x \in [0, 1]$, it is possible to observe Y(x) which satisfies

$$E(Y(x)) = \beta_1 + \beta_2 x$$
 and $var(Y(x)) = \sigma^2 (> 0)$.

All observations are independent. The design measure ξ attaches weight one-third each to the 3 points x_1, x_2 and $x_3 \in [0, 1]$. Not all of x_1, x_2 and x_3 are equal.

(i) Show that the information matrix $M(\xi)$ has determinant

$$\frac{1}{9}(3S_2 - S_1^2)$$

where $S_k = \sum_{i=1}^3 x_i^k$ (k = 1, 2).

(ii) Show that the variance function of ξ is

$$\frac{3(S_2 - 2S_1x + 3x^2)}{3S_2 - S_1^2}$$

- (iii) Prove that for fixed x_2 and x_3 , the determinant of $M(\xi)$ is maximised with respect to $x_1 \in [0,1]$ when $x_1 = 0$ or $x_1 = 1$. Deduce that the maximum value of det $M(\xi)$ with respect to x_1, x_2 and x_3 occurs when each $x_i = 0$ or 1 (i = 1, 2, 3).
- (iv) Hence show that the maximum value of det $M(\xi)$ with respect to x_1, x_2 and $x_3 \in [0, 1]$ is $\frac{2}{9}$.
- (v) Suppose the design measure ξ_1 has $x_1 = x_2 = 0$ and $x_3 = 1$ and the design measure ξ_2 has $x_1 = 0$, $x_2 = \frac{1}{2}$ and $x_3 = 1$. Show that ξ_1 is D-optimal, but not G-optimal, within the class of design measures of the type ξ above.
- (vi) Comment on this result in relation to the General Equivalence Theorem.

- 5. (i) Define a simple random sample of size n without replacement from a population of size N.
 - (ii) If Y_1, Y_2, \ldots, Y_N denote the population values and y_1, y_2, \ldots, y_n denote the sample values show that $\overline{y} = \frac{1}{n} \sum_{i=1}^n y_i$ is unbiased for $\overline{Y} = \frac{1}{N} \sum_{i=1}^N Y_i$.
 - (iii) Show that the sample variance, s^2 , is unbiased for the population variance, σ^2 .

In a particular survey an estimate of the proportion of individuals in the population who possess a certain characteristic, C, is required.

- (iv) By setting $Y_i = 1$ if the i^{th} population member has characteristic C, and $Y_i = 0$ otherwise, show that the proportion, π , of the sample who have C is unbiased for the proportion of the population who have C.
- (v) Prove that

$$\frac{N-n}{N(n-1)}\pi(1-\pi)$$

is unbiased for $var(\pi)$.

(vi) Discuss briefly the problem of obtaining accurate responses from sampled individuals when they are asked "Do you possess characteristic C?" in a face-to-face interview situation.

[You may assume that $var(\overline{y}) = (1 - \frac{n}{N})\frac{\sigma^2}{n}$ and that for any real numbers $x_1, x_2, \ldots, x_m, \quad \sum_{i=1}^m (x_i - \overline{x})^2 = \sum_{i=1}^m x_i^2 - m\overline{x}^2$, where $\overline{x} = \frac{1}{m} \sum_{i=1}^m x_i$]