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1. a) Explain the terms systematic effect and blocking in connection with

experimental design.

b) Three different insecticides A, B and C are to be tested on 36 closely

spaced plum trees arranged in a 6 x 6 square array. Two possible layouts

are suggested:

Layout 1 Layout 2

A B C A B C

B C A B C A

C A B C A B

A B C A B C

B C A B C A

C A B C A B

A A C B C B

A B A B C C

C A C A B B

B B A C A C

C C B A B A

B C B C A A

i) Discuss the advantages and disadvantages of these two layouts and

state with reasons which one you consider to be more appropriate.

ii) What practical problems might there be in carrying out an experiment

of this kind?
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2. a) Define a balanced incomplete block design (BIBD).

b) Show that in a symmetric BIBD any two blocks have the same number of

treatments in common. You may assume that the incidence matrix of a

symmetric BIBD is invertible.

c) Define a finite difference set.

d) By considering the set {0, 1, 6, 8, 18} with arithmetic modulo 21, find

a BIBD for 16 treatments, with 20 blocks of 4 units each. Justify your

construction in detail and find the other parameters of your BIBD.

3. a) In the context of a 2n factorial experiment explain what is meant by saying

that two main effects are aliased with each other.

b) In a particular case the factors are A, B, C, D and E. Only 16 experimental

units are available and these are arranged in a 4 × 4 square array. The

5-factor interaction is aliased with the mean, the effects ABC and CD

are confounded with the row effects and the effects ADE and AC are

confounded with the column effects.

i) Suggest a set of 16 treatment combinations to be used in the

experiment.

ii) List all the other effects which are confounded with

(I) the row effects.

(II) the column effects.

iii) Construct a suitable design and discuss its properties, making any

assumptions clear.

iv) Show that your set of 16 treatment combinations cannot be allocated

to the cells of a 2 × 8 rectangular array so that no main effects are

confounded with either row or column effects.
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4. In a linear model, the expected value of the observation Y (x) at the point x in a

design region is f(x)Tβ, where f(x) is a known vector of continuous functions of

x, and β = (β1, . . . βt)
T is a t×1 vector of unknown parameters. All observations

are independent and have the same variance.

a) In this context, explain what is meant by a D-optimal design measure and

a G-optimal design measure.

b) State, without proof, the General Equivalence Theorem for linear models.

c) In a particular case, E(Y (x)) = β1x+ β2x
2, where Y (x) is the observation

at x, and x is restricted to lie in the closed interval [1,2].

i) Calculate the information matrix, M(ξ), of the design measure ξ which

attaches weight one-half to each of the points x = 1 and x = 2.

ii) Show that the variance function of ξ is

d(x, ξ) =
x2

2
(17− 18x+ 5x2).

iii) Show that x− 1 and x− 2 are factors of h(x) = d(x, ξ)− 2.

iv) By factorising h(x) show that d(x, ξ) ≤ 2 for all x ∈ [1, 2].

v) Show that for any design measure ξ′ over [1,2], the determinant of

M(ξ′) cannot exceed 1.
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5. a) Describe the advantages of a sample survey over a complete census.

b) Explain what is meant by a simple random sample from a finite population.

c) Show that the sample mean y (of some observation Y ) is an unbiased

estimator of the population mean Y , and state var(y) in terms of the

population variance, the sampling fraction and the sample size.

d) In a survey to examine smoking habits a simple random sample of n

individuals is taken from a fixed population of size N. Each person is

asked to classify himself or herself as one of:

1. a smoker.

2. a non-smoker.

The (unknown) proportion of people in the population who fall in the first

category is P and the observed proportion of people in the sample who fall

in this category is p.

It is desired to estimate D, the difference between the proportions in the

population of those who smoke and those who do not.

i) Show that d = 2p− 1 is unbiased for D and that

var(d) =
4(N − n)P (1− P )

n(N − 1)
.

ii) It is a requirement that var(d) ≤ v, where v > 0 is a given constant.

Show that in order to satisfy this requirement, whatever the value of

P, n should be at least
N

1 + v(N − 1)
.

iii) Discuss any difficulties which might arise from asking people to classify

themselves.
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