Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3P9/M4P9
Linear Algebra and Matrices
Date: Wednesday, 10th May 2006 Time: 2 pm - 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used

Note: In this paper, R denotes a commutative ring, K a field, and $K[X]$ is the polynomial ring over K.

1. Let A and B be $r \times r$ matrices over K. Say what is meant by ' A and B are conjugate'.

Let $M=\left(K^{r}, A\right)$ and $N=\left(K^{r}, B\right)$ be the corresponding $K[X]$-modules. Show that the $K[X]$-module homomorphisms $\theta: M \rightarrow N$ are given by the matrices T such that $T A=B T$. Deduce that $M \cong N$ as $K[X]$-modules if and only if A, B are conjugate.

Show also that, if A and B are conjugate, then $c_{A}(X)=c_{B}(X)$.
Now take $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $C=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, and let M, N, P
respectively be the corresponding $\mathbb{R}[X]$-modules. Determine whether or not any of M, N, P are isomorphic to one another as $\mathbb{R}[X]$-modules.

Does your answer change if we replace \mathbb{R} by $\mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$, the field of two elements? Give your reasoning.
2. Define the following terms.
(1) A cyclic R-module.
(2) The annihilator $\operatorname{Ann}(M)$ of an R-module M.

Show that M is cyclic if and only if there is a surjective R-module homomorphism $\pi: R \rightarrow M$. Show also that the kernel of π is $\operatorname{Ann}(M)$, and that $R / \operatorname{Ann}(M) \cong M$ as R-modules. If you use an Isomorphism Theorem, then you must prove that theorem.

Show also that if N is another cyclic R-module, then $M \cong N$ as R-modules if and only if $\operatorname{Ann}(M)=\operatorname{Ann}(N)$.
Now take $R=K[X]$, let

$$
g(X)=X^{r}-g_{r-1} X^{r-1}-\cdots-g_{1} X-g_{0} \in K[X], \quad r \geq 1
$$

and put $M=K[X] / K[X] g(X)$.
Show that M is a vector space over K, and find a basis of M so that the action of X on M is represented by the companion matrix $C(g)$ of $g(X)$.
3. Let M be an R-module. State what is meant by ' M is the direct sum of its submodules L, N^{\prime}. Show that the following are equivalent.
(1) $\quad M=L \oplus N$;
(2) Given $m \in M$, there are unique elements $\ell \in L, n \in N$ with $m=\ell+n$.

Let A be an $r \times r$ matrix over a field K and let $M=\left(K^{r}, A\right)$ be the $K[X]$-module given by A. Show that $M=L \oplus N$ with $\operatorname{dim}_{K}(L)=t$ and $\operatorname{dim}_{K}(N)=s$ if and only if there is an invertible matrix P with $P^{-1} A P=\left(\begin{array}{cc}B & 0 \\ 0 & C\end{array}\right)$ for some matrices B and C, of sizes $s \times s$ and $t \times t$ respectively.

Suppose that M is indecomposable, that is, $M=L \oplus N$ only if $L=0$ or $N=0$. Show that $m_{A}(X)=p(X)^{k}$ for some irreducible polynomial $p(X)$. (You may use without proof a result that leads to a direct sum decomposition, but you must state it clearly.)
Is the converse true?
Take $A=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$, regarded as a matrix over the complex numbers \mathbb{C}.
Determine whether or not M is indecomposable.
4. Let $A=\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$, let $M=\left(\mathbb{C}^{5}, A\right)$ and let $N=\left(\mathbb{R}^{5}, A\right)$.

Find the primary decomposition of M as a $\mathbb{C}[X]$-module, giving a \mathbb{C}-basis for each component.
Hence find the primary decomposition of N as an $\mathbb{R}[X]$-module, giving an \mathbb{R}-basis for each component.

Find also the Rational Canonical Forms for A over \mathbb{C} and over \mathbb{R}. (You should not need to make any hard calculations for this last part.)
5. Let M be a finitely generated module over $K[X]$, and suppose that M is $p(X)$-primary for some irreducible polynomial over K.
State the Elementary Divisor Theorem for M.
Suppose further that $p(X)=X-\lambda$ and that $M=K[X] /(X-\lambda)^{t} K[X]$ for some $t \geq 1$. Construct the K-basis v_{1}, \ldots, v_{t} of M such that the action of X on M is described by a Jordan Block matrix.

Describe the Jordan Normal Form of a complex matrix A.
Given that a complex matrix A has a Jordan Normal Form, show that A can be written as a sum $A=D+N$, where D is diagonalizable, N is nilpotent, and $D N=N D$.

