Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3P9/M4P9

Linear Algebra and Matrices

Date: Wednesday, 10th May 2006 Time: 2 pm - 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

Note: In this paper, R denotes a commutative ring, K a field, and K[X] is the polynomial ring over K.

1. Let A and B be $r \times r$ matrices over K. Say what is meant by 'A and B are conjugate'.

Let $M=(K^r,A)$ and $N=(K^r,B)$ be the corresponding K[X]-modules. Show that the K[X]-module homomorphisms $\theta:M\to N$ are given by the matrices T such that TA=BT. Deduce that $M\cong N$ as K[X]-modules if and only if A,B are conjugate.

Show also that, if A and B are conjugate, then $c_A(X) = c_B(X)$.

Now take
$$A=\left(egin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right)$$
, $B=\left(egin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right)$ and $C=\left(egin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)$, and let $M,\,N,\,P$

respectively be the corresponding $\mathbb{R}[X]$ -modules. Determine whether or not any of M, N, P are isomorphic to one another as $\mathbb{R}[X]$ -modules.

Does your answer change if we replace \mathbb{R} by $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$, the field of two elements? Give your reasoning.

- 2. Define the following terms.
 - (1) A *cyclic* R-module.
 - (2) The annihilator Ann(M) of an R-module M.

Show that M is cyclic if and only if there is a surjective R-module homomorphism $\pi:R\to M$. Show also that the kernel of π is $\mathrm{Ann}(M)$, and that $R/\mathrm{Ann}(M)\cong M$ as R-modules. If you use an Isomorphism Theorem, then you must prove that theorem.

Show also that if N is another cyclic R-module, then $M \cong N$ as R-modules if and only if $\mathrm{Ann}(M) = \mathrm{Ann}(N)$.

Now take R = K[X], let

$$g(X) = X^r - g_{r-1}X^{r-1} - \cdots - g_1X - g_0 \in K[X], \quad r \ge 1$$

and put M = K[X]/K[X]g(X).

Show that M is a vector space over K, and find a basis of M so that the action of X on M is represented by the companion matrix C(g) of g(X).

- 3. Let M be an R-module. State what is meant by 'M is the direct sum of its submodules L, N'. Show that the following are equivalent.
 - (1) $M = L \oplus N$;
 - (2) Given $m \in M$, there are unique elements $\ell \in L$, $n \in N$ with $m = \ell + n$.

Let A be an $r \times r$ matrix over a field K and let $M = (K^r, A)$ be the K[X]-module given by A. Show that $M = L \oplus N$ with $\dim_K(L) = t$ and $\dim_K(N) = s$ if and only if there is an invertible matrix P with $P^{-1}AP = \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$ for some matrices B and C, of sizes $s \times s$ and $t \times t$ respectively.

Suppose that M is indecomposable, that is, $M = L \oplus N$ only if L = 0 or N = 0. Show that $m_A(X) = p(X)^k$ for some irreducible polynomial p(X). (You may use without proof a result that leads to a direct sum decomposition, but you must state it clearly.)

Is the converse true?

Take
$$A=\begin{pmatrix}1&1&1&1\\0&1&1&1\\0&0&1&1\\0&0&0&1\end{pmatrix}$$
, regarded as a matrix over the complex numbers $\mathbb C.$

Determine whether or not M is indecomposable.

$$\textbf{4.} \quad \text{Let } A = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{array} \right) \text{, let } M = (\mathbb{C}^5, A) \text{ and let } N = (\mathbb{R}^5, A).$$

Find the primary decomposition of M as a $\mathbb{C}[X]$ -module, giving a \mathbb{C} -basis for each component. Hence find the primary decomposition of N as an $\mathbb{R}[X]$ -module, giving an \mathbb{R} -basis for each component.

Find also the Rational Canonical Forms for A over \mathbb{C} and over \mathbb{R} . (You should not need to make any hard calculations for this last part.)

5. Let M be a finitely generated module over K[X], and suppose that M is p(X)-primary for some irreducible polynomial over K.

State the Elementary Divisor Theorem for M.

Suppose further that $p(X) = X - \lambda$ and that $M = K[X]/(X - \lambda)^t K[X]$ for some $t \ge 1$. Construct the K-basis v_1, \ldots, v_t of M such that the action of X on M is described by a Jordan Block matrix.

Describe the Jordan Normal Form of a complex matrix A.

Given that a complex matrix A has a Jordan Normal Form, show that A can be written as a sum A=D+N, where D is diagonalizable, N is nilpotent, and DN=ND.