1. Let A be an $r \times r$ matrix over a field F. Show how to define the scalar multiplication between a polynomial $f(X) \in F[X]$ and a vector $v \in F^r$ that gives rise to the F[X]-module $M = (F^r, A)$ with "X acting as A". (You are not expected to verify that M is a module.)

Let B be an $s \times s$ matrix over F and let $N = (F^s, B)$. Show that there is a bijective correspondence between

(1) F[X]-module homomorphisms $\theta:M\to N$

and

(2) $s \times r$ matrices T over F with TA = BT.

Let $A=\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$ and $B=\left(\begin{array}{cc} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 2 & 1 \end{array}\right)$. Find all F[X]-module homomorphisms from M to N.

2. Let F be a field and let M be an F[X]-module. Define an F[X]-submodule of M.

Take $M=(F^r,A)$ for a matrix A over F. Show that the F[X]-submodules of M are in bijective correspondence with the A-invariant subspaces of F^r .

Suppose that L is a submodule of M and that $L \neq 0, M$. Show that there is an invertible matrix P with $P^{-1}AP = \left(\begin{array}{cc} B & D \\ 0 & C \end{array} \right)$.

Prove further that $M=L\oplus N$ for some submodule N if and only if we can take D=0.

3. Define

- (a) the minimal polynomial $m_A(X)$ of an $r \times r$ matrix over a field F;
- (b) the annihilator Ann(M) of an F[X]-module M.

Establish the relationship between $m_A(X)$ and Ann(M) when $M=(F^r,A)$.

<u>State</u> the Cayley-Hamilton Theorem, and deduce that $m_A(X)$ divides the characteristic polynomial $c_A(X)$.

<u>State</u> a further relationship between $m_A(X)$ and $c_A(X)$, and deduce that an irreducible polynomial p(X) divides $m_A(X)$ if and only if it divides $c_A(X)$

For each $i=1,\ldots,r$, give, with proof, an example of an $r\times r$ matrix with minimal polynomial of degree i.

4. Let M be an F[X]-module, F a field, and suppose that b(X), c(X) are coprime polynomials with b(X)c(X)M=0. Show that M has a direct sum decomposition $M=b(X)M\oplus c(X)M$.

Let p(X) be an irreducible polynomial. Define a p(X)-primary module.

Given that $\operatorname{Ann}(M) \neq 0$, prove that $M = M_1 \oplus \cdots \oplus M_k$ with each M_i $p_i(X)$ -primary for some $p_i(X)$.

Let
$$A = \begin{pmatrix} -1 & 2 & 0 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
. Find the primary decomposition of (\mathbb{C}^4, A) . (You are *not*

expected to find F-bases of the components.)

$$5. \quad \text{Let } J = \left(\begin{array}{ccccc} \lambda & 0 & \cdots & 0 & 0 \\ 1 & \lambda & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda & 0 \\ 0 & 0 & \cdots & 1 & \lambda \end{array} \right) \text{ be a } t \times t \text{ Jordan block matrix. Show that }$$

$$m_J(X) = c_J(X) = (X - \lambda)^t$$

Determine all the possible Jordan Normal Forms of an $r \times r$ complex matrix that satisfies an equation $A^n = I_r$ for some n > 1.