1. Let A be an $r \times r$ matrix over a field F. Show how to define the scalar multiplication between a polynomial $f(X) \in F[X]$ and a vector $v \in F^{r}$ that gives rise to the $F[X]$ module $M=\left(F^{r}, A\right)$ with " X acting as A ". (You are not expected to verify that M is a module.)

Let B be an $s \times s$ matrix over F and let $N=\left(F^{s}, B\right)$. Show that there is a bijective correspondence between
(1) $F[X]$-module homomorphisms $\theta: M \rightarrow N$
and
(2) $s \times r$ matrices T over F with $T A=B T$.

Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{lll}2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 2 & 1\end{array}\right)$. Find all $F[X]$-module homomorphisms from M to N.
2. Let F be a field and let M be an $F[X]$-module. Define an $F[X]$-submodule of M.

Take $M=\left(F^{r}, A\right)$ for a matrix A over F. Show that the $F[X]$-submodules of M are in bijective correspondence with the A-invariant subspaces of F^{r}.

Suppose that L is a submodule of M and that $L \neq 0, M$. Show that there is an invertible matrix P with $P^{-1} A P=\left(\begin{array}{cc}B & D \\ 0 & C\end{array}\right)$.
Prove further that $M=L \oplus N$ for some submodule N if and only if we can take $D=0$.
3. Define
(a) the minimal polynomial $m_{A}(X)$ of an $r \times r$ matrix over a field F;
(b) the annihilator $\operatorname{Ann}(M)$ of an $F[X]$-module M.

Establish the relationship between $m_{A}(X)$ and $\operatorname{Ann}(M)$ when $M=\left(F^{r}, A\right)$.
State the Cayley-Hamilton Theorem, and deduce that $m_{A}(X)$ divides the characteristic polynomial $c_{A}(X)$.

State a further relationship between $m_{A}(X)$ and $c_{A}(X)$, and deduce that an irreducible polynomial $p(X)$ divides $m_{A}(X)$ if and only if it divides $c_{A}(X)$
For each $i=1, \ldots, r$, give, with proof, an example of an $r \times r$ matrix with minimal polynomial of degree i.
4. Let M be an $F[X]$-module, F a field, and suppose that $b(X), c(X)$ are coprime polynomials with $b(X) c(X) M=0$. Show that M has a direct sum decomposition $M=b(X) M \oplus c(X) M$.
Let $p(X)$ be an irreducible polynomial. Define a $p(X)$-primary module.
Given that $\operatorname{Ann}(M) \neq 0$, prove that $M=M_{1} \oplus \cdots \oplus M_{k}$ with each $M_{i} p_{i}(X)$-primary for some $p_{i}(X)$.
Let $A=\left(\begin{array}{rrrr}-1 & 2 & 0 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$. Find the primary decomposition of $\left(\mathbb{C}^{4}, A\right)$. (You are not expected to find F-bases of the components.)
5. Let $J=\left(\begin{array}{ccccc}\lambda & 0 & \cdots & 0 & 0 \\ 1 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda & 0 \\ 0 & 0 & \cdots & 1 & \lambda\end{array}\right)$ be a $t \times t$ Jordan block matrix. Show that

$$
m_{J}(X)=c_{J}(X)=(X-\lambda)^{t}
$$

Determine all the possible Jordan Normal Forms of an $r \times r$ complex matrix that satisfies an equation $A^{n}=I_{r}$ for some $n>1$.

