Question 1. Let X and Y be two normed linear spaces and let $T: X \to Y$ be a bounded linear operator from X to Y.

- **a.** Define the norm of the operator T.
- **b.** Find the norm of the operator $T:L^p(0,2)\to L^p(0,2)$, $1\leq p<\infty$, where

$$Tf(t) = t^2 f(t), t \in (0, 2).$$

Question 2. Let X and Y be metric linear vector spaces and let $T: X \to Y$ be a linear operator from X to Y.

- \mathbf{a} . Define the graph of the operator T.
- b. Give definition of a closed operator.
- c. Show that the operator T in $L^2(0,1)$ with $\mathcal{D}(T)=C[0,1]$, such that

$$Tf = f(0),$$

is not closable.

Question 3.

- a. What is the Schwartz inequality in a Hilbert space? Prove it.
- **b.** What is the Schwartz inequality for the Hilbert space $L^2(\mathbb{R})$.
- c. What is Bessel's inequality? Prove it.

Question 4. Let $H^1(0,2\pi)\subset L^2(0,2\pi)$ be a Hilbert space with the scalar product given by

$$(f,g) = \int_0^{2\pi} \left(f'(x)\overline{g'(x)} + f(x)\overline{g(x)} \right) dx$$

and let

$$e_n(x) = a_n e^{inx}.$$

- a. Show that $\{e_n\}_{n\in\mathbb{Z}}$ is an orthogonal system in $H^1(0,2\pi)$. Find the coefficients a_n , such that it is an orthonormal system.
- **b.** Find a function $f \in H^1(0, 2\pi)$ such that f is orthogonal to all e_n , $n \in \mathbb{Z}$, in $H^1(0, 2\pi)$.

Question 5.

a. Show that $T:L^2(0,\infty)\to L^2(0,\infty)$ defined by

$$Tf(x) = \int_0^\infty \frac{1}{x+y} f(y) \, dy$$

is bounded.

 ${f b.}$ Show that T is not compact.