UNIVERSITY OF LONDON

Course: M3P7/M4P7 Setter: Zegarlinski Checker: Editor: External: Date: 1. (a) Define a metric linear space.

(b) Which of the following spaces satisfy conditions of the metric linear space.

(i)

$$s \equiv \{x \equiv (x_j \in \mathbb{R})_{j \in \mathbb{N}} : \sum_{k \in \mathbb{N}} |x_k|^k < \infty\}$$

with coordinatewise addition of the vectors and multiplication by a scalar and a metric $\hfill \hfill \hf$

$$\rho(x,y) \equiv \sum_{k} 2^{-k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$$

(ii) \mathbb{M}_2 complex 2×2 matrices with a metric given as follows

$$\rho(m_1, m_2) \equiv (Tr((m_1 - m_2)^*(m_1 - m_2)))^{\frac{1}{2}}$$

where Tr(A) denotes the trace of a matrix A and m^{\ast} denotes the adjoint matrix of m.

BSc and MSci EXAMINATIONS (MATHEMATICS) MAY–JUNE 2005

This paper is also taken for the relevant examination for the Associateship.

M3P7/M4P7 FUNCTIONAL ANALYSIS

Credit will be given for all questions attempted but extra credit will be given for complete or

Date: examdate Time: examtime

- 2. (a) State the Banach contraction mapping principle explaining carefully all necessary notions.
 - (b) Prove or disprove that the following equation has a unique solution in any interval [0,T] for each $T \in \mathbb{R}^+$.

$$x(t) = \cos(\pi t) + 10^{23} \int_0^t ds \sin\left((t-s)|x(s)|\right)$$

nearly complete answers.

- 3. (a) State the Banach Steinhaus theorem.
 - (b) Give a definition of the weak convergence in a Banach space and explain a difference between weak and strong convergence, if any.
 - (c) Prove or disprove the following statement: If a sequence x_n in a normed space $(X, ||\cdot||)$ is convergent weakly to an element $x \in X$, then the sequence of norms $(||x_n||)_{n \in \mathbb{N}}$ is bounded.

Hint: Consider a suitable sequence of operators on the Banach space $(X^*, || \cdot ||_{X^*})$.

- 4. (a) Give a definition of a closed operator.
 - (b) Consider the following operator $A : \mathcal{D} \to \mathcal{C}([-\pi,\pi])$

$$Af(x) \equiv \left(\frac{d}{dx} + x\right)f(x)$$

on the domain ${\cal D}$ once continuously differentiable functions vanishing at the end points of the interval $[-\pi,\pi]$. Assuming the supremum norm in the space, prove or disprove that this operator is

- (i) closed;
- (ii) unbounded.
- (c) Does any of this property change if the space of continuous functions will be replaced by the square integrable functions on $[-\pi, \pi]$.

- 5. Which of the following statements are true and which are not ? No reasoning need be given: just answer T or F in the box next to each question. The marking will be as follows (subject to a minimum score of zero) : each correct answer scores +1, each wrong answer -1 and zero for no answer.
 - (5.1) \Box Each linear space has a Hamel basis.
 - (5.2) \Box The linear space $\{a + b\sqrt{-3} : a, b \in \mathbb{Q}\}$ is one dimensional.
 - (5.3) \Box Each metric linear space is a normed space.
 - (5.4) \Box In every normed space the addition of vectors is continuous, but multiplication by a scalar may be not continuous.
- (5.5) \Box All norms on a finite dimensional space are equivalent.
- (5.6) \Box If a unit ball in a metric linear space is compact, then the space is finite dimensional.
- (5.7) \Box Every linear operator from a finite dimensional normed space into itself is bounded.
- (5.8) \Box There exists a linear operator between two Banach spaces which is continuous, but not bounded.
- (5.10) \Box The topological dual space of l_{∞} is isometrically isomorphic to l_1 .
- (5.11) \Box The topological dual space of l_2 is isometrically isomorphic to any infinite dimensional separable Hilbert space.
- (5.12) \Box A sequence given by the canonical Schauder basis in l_p , $p \in (1, \infty)$, converges in the weak topology.
- (5.13) \square A nonempty complete metric space is of second category.
- (5.14) \square Banach Steinhaus theorem is not true in finite dimensional normed spaces.
- (5.15) \Box There exists a continuous real valued periodic function whose Fourier series diverges at any given point.
- (5.16) \Box An unbounded linear operator cannot be closed.
- (5.17) \Box Each bounded operator is closed.
- (5.18) \Box The graph of closed operator can be open in the product topology.
- (5.19) \Box If $(X, || \cdot ||), X \neq \emptyset$, is a Banach space, then X is of first category.
- (5.20) \Box Inverse of the bijective operator acting between two Banach spaces may be unbounded.