- Q1. (i) Give a definition of a probability space explaining carefully all notions involved.
 - (ii) Give a definition of convergence in probability and almost everywhere, and explain relationship between them.
 - (iii) Explain giving reasons which of the following sequences converges in probability and which converges almost everywhere on the probability space $([0, 1], \Sigma, \lambda)$ with λ denoting the Lebesgue measure.
 - (a) Let $\mathbb{Q} \equiv \{q_n \in [0,1]\}_{n \in \mathbb{N}}$ be enumeration of rational numbers in the unit interval. Let

$$f_n(x) \equiv \begin{cases} 1 & if \ x = q_n \\ 0 & otherwise \end{cases}$$

(b)

$$f_n(x) = 2^n \chi([\sin(n\frac{\pi}{2}) - 2^{-n}, \sin(n\frac{\pi}{2}) + 2^{-n}])$$

where $\chi([a, b])$ denotes the characteristic function of the interval [a, b].

2. (i) Suppose that for a random variable f on a probability space (Ω, Σ, μ) and for some $\varepsilon \in (0, \infty)$, $e^{\pm \varepsilon f}$ is integrable. Show that for L > 0

$$\mu(\{|f| > L\}) \le e^{-\varepsilon L} 2\mu(\cosh(\varepsilon f))$$

- (ii) Let $\mu \equiv \nu_0^{\otimes \mathbb{N}}$ be the infinite product of symmetric Bernoulli measures ν_0 , on the space (Ω, Σ) with $\Omega \equiv \{-1, +1\}^{\mathbb{N}}$ and Σ denoting the Borel σ -algebra. Assuming Poincare inequality for the infinite product of symmetric Bernoulli measures prove the WLLN for the following sequence of dependent random variables: $X_n \equiv \pi_n \cdot \pi_{n+1} \cdot \pi_{n+2}$, $n \in \mathbb{N}$, where $\Omega \ni \omega \equiv (\omega_j \in \{-1, +1\})_{j \in \mathbb{N}} \longmapsto \pi_n(\omega) \equiv \omega_n$.
- (i) State the Strong Law of Large Numbers for i.i.d. random variables with finite second moment.
 - Prove the Strong Law of Large Numbers for i.i.d. random variables which have finite 5-th moment.

- 4. (i) Give a definition of the distribution function and a characteristic function of a random variable X on a probability space (Ω, Σ, μ)
 - Prove or disprove that the characteristic function is positive definite, continuous and equal to one at zero.
 - (iii) Prove or disprove that a linear combination of two independent Gaussian random variables is also a Gaussian random variable.

5. (i) Find the characteristic function $\xi_n(t)$ of

$$S_n = \sum_{j=1}^n (X_j - \langle X_j \rangle)$$

where X_j are independent Bernoulli random variables and $\langle X_j \rangle$ denotes the mean value of X_j .

(ii) Using the result in Part (i), prove or disprove that

$$\xi_n(\frac{t}{\sqrt{n}}) \to e^{-\frac{1}{2}\sigma^2 t^2}$$

for some $\sigma^2 \in (0,\infty).$

(iii) Using this and assuming the Poincare inequality for the product of Bernoulli measures prove the Poincare inequality for the Gaussian measure on real line.