Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3P6/M4P6

Probability Theory

Date: Wednesday, 10th May 2006

Time: 2 pm – 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- 1. (i) State the definition of the *variance* of an integrable random variable.
 - (ii) Determine the variance of a random variable which is uniformly distributed on the interval (1, 2).
 - (iii) Let $\Omega = (0,1)$, $\mathcal{F} = \mathcal{B}(0,1)$ and P = Lebesgue measure on (0,1). Show that
 - (a) $\infty = \sup\{\operatorname{var}(X) | X : \Omega \to \mathbb{R} \text{ is a random variable with } E(X) = 1\}.$
 - (b) $\infty \neq \sup\{\operatorname{var}(X) | X : \Omega \to \mathbb{R} \text{ is a random variable with } E(X^2) = 1\}.$
- 2. (i) State the definition of what it means for a family of random variables $(X_i)_{i \in I}$ to be *independent*, where I is an arbitrary index set.
 - (ii) Let X and Y be two random variables with joint distribution described by the following table:

$Y \backslash X$	-1	1	0
0	0	0	$\frac{1}{2}$
2	$\frac{1}{4}$	$\frac{1}{4}$	0

Show that X and Y are uncorrelated. Are X and Y independent? Prove your answer.

- 3. Let $\Omega = (0,1)$, $\mathcal{F} = \mathcal{B}(0,1)$ and P = Lebesgue measure on (0,1). Let $s \ge 0$ and $X_n(\omega) = n^s \mathbf{1}_{(0,\frac{1}{\omega})}(\omega)$, $n \ge 1$.
 - (i) Show that the sequence (X_n) converges in probability.
 - (ii) For which $s \in [0, \infty)$ does (X_n) also converge in L^1 ? Prove your answer.
 - (iii) Assume s = 0 and define $Y_n(\omega) = X_1(\omega) + \ldots + X_n(\omega)$. Show that Y_n converges almost surely, but *not* in L^1 .
 - (iv) Now let Z, Z_n be arbitrary real-valued random variables and $p \ge 1$. Show that if (Z_n) converges to Z in L^p , then it converges to Z in probability as well.

- 4. Let X, X_n be real-valued random variables on a probability space (Ω, \mathcal{F}, P) .
 - (i) Show that the event $\{\lim_n X_n = X\}$ belongs to \mathcal{F} .
 - (ii) Let (X_n) be *independent* and A = (a, b) an arbitrary interval. Show with the help of both Borel-Cantelli Lemmas that either $P(X_n \in A \text{ i.o.}) = 0$ or $P(X_n \in A \text{ i.o.}) = 1$.
 - (iii) Let again (X_n) be independent and A = (a, b) an arbitrary interval. State whether the following implications are correct or not. Prove your answers.
 - (a) $P(X_n \in A \text{ i.o.}) = 1 \Longrightarrow P(X_n \in A^c \text{ i.o.}) = 0.$
 - (b) $P(X_n \in A \text{ i.o.}) = 0 \Longrightarrow P(X_n \in A^c \text{ i.o.}) = 1.$

- 5. (i) Let X be a random variable such that $P(X = 1) = \frac{1}{2} = P(X = -1)$. Compute the characteristic function of X.
 - (ii) State the definition of a martingale.
 - (iii) Let Y, X_1, X_2, X_3, \ldots be a collection of independent and bounded random variables such that $E(X_n) = 0$ for all $n \ge 1$. Let $\mathcal{F}_n = \sigma(Y, X_1, \ldots, X_n)$ be the σ -algebra generated by Y, X_1, X_2, \ldots, X_n . Show that $Z_n = Y(X_1 + \cdots + X_n)$ is a martingale with respect to (\mathcal{F}_n) , for $n \ge 1$.