M3/4P6 Exam 2005

- 1. Let (Ω, \mathcal{F}, P) be a probability space.
 - (a) State the definition of a probability measure P.
 - (b) Let $\{E_n\}$ be a sequence of events in \mathcal{F} . Prove that

$$P(\bigcup_{n} E_{n}) \le \sum_{n} P(E_{n}).$$

(c) Let the distance of two events A and B be defined by $d(A, B) = P(A\Delta B)$, where $A\Delta B$ is the symmetric difference of A and B. Prove that d satisfies the triangle inequality. Furthermore, prove that if A and B are independent, then

$$d(A,B) \ge (P(B) - P(A))^2.$$

- 2. Let X_1, \ldots, X_n be random variables defined on a probability space (Ω, \mathcal{F}, P) .
 - (a) State the definition of X_1, \ldots, X_n being independent.
 - (b) Let X_1, X_2, X_3 be independent random variables with $P(X_i = 0) = P(X_i = 1) = 1/2$. Let

$$A_1 = \{X_2 = X_3\}, \quad A_2 = \{X_3 = X_1\}, \quad A_3 = \{X_1 = X_2\}.$$

Show that these events are pairwise independent but not independent.

(c) Let X_1 and X_2 be independent and have uniform distributions on (0,1). Let

$$W_1 = \sqrt{-2\ln X_1}\cos(2\pi X_2), \quad W_2 = \sqrt{-2\ln X_1}\sin(2\pi X_2).$$

Show that W_1 and W_2 are independent and have standard normal distributions.

- 3. Let $\{X_n\}$ be a sequence of random variables and X a random variable.
 - (a) State the following definitions: convergence in probability $(X_n \xrightarrow{P} X)$, convergence almost surely $(X_n \xrightarrow{a.s.} X)$, convergence in L^p norm $(X_n \xrightarrow{L^p} X)$, and convergence in distribution $(X_n \xrightarrow{D} X)$.
 - (b) Draw a diagram to illustrate the relationship between these modes of convergence.
 - (c) Prove that if $X_n \xrightarrow{P} X$ then there exists a subsequence $\{X_{n_k}\}$ such that $X_{n_k} \xrightarrow{\text{a.s.}} X$ as $k \to \infty$.
- 4. (a) Let $\{X_n\}$ be a sequence of independent random variables with $EX_i = \mu$ and $var(X_i) \le C < \infty$. Prove that

$$\frac{S_n}{n} \xrightarrow{L^2} \mu$$

where $S_n = X_1 + \dots + X_n$.

(b) Let f be a continuous function on [0, 1] and let

$$f_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f(\frac{k}{n})$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, be the Bernstein polynomial of degree *n* associated with *f*. Prove that as $n \to \infty$,

$$\max_{x \in [0,1]} |f_n(x) - f(x)| \to 0.$$

- 5. Let $\{X_n\}$ be a sequence of random variables and X a random variable.
 - (a) Prove that if $X_n \xrightarrow{P} X$ then $X_n \xrightarrow{D} X$.
 - (b) Prove that if $X_n \xrightarrow{D} c$ and c is a constant than $X_n \xrightarrow{P} X$.
 - (c) Let $\{X_n\}$ be independent and identically distributed with $E(X_1) = m < \infty$. Prove that

$$\frac{S_n}{n} \xrightarrow{P} m$$

where $S_n = X_1 + \dots + X_n$.