M3/4P6 Exam 2005

1. Let (Ω, \mathcal{F}, P) be a probability space.
(a) State the definition of a probability measure P.
(b) Let $\left\{E_{n}\right\}$ be a sequence of events in \mathcal{F}. Prove that

$$
P\left(\bigcup_{n} E_{n}\right) \leq \sum_{n} P\left(E_{n}\right) .
$$

(c) Let the distance of two events A and B be defined by $d(A, B)=P(A \Delta B)$, where $A \Delta B$ is the symmetric difference of A and B. Prove that d satisfies the triangle inequality. Furthermore, prove that if A and B are independent, then

$$
d(A, B) \geq(P(B)-P(A))^{2}
$$

2. Let X_{1}, \ldots, X_{n} be random variables defined on a probability space (Ω, \mathcal{F}, P).
(a) State the definition of X_{1}, \ldots, X_{n} being independent.
(b) Let X_{1}, X_{2}, X_{3} be independent random variables with $P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=1 / 2$. Let

$$
A_{1}=\left\{X_{2}=X_{3}\right\}, \quad A_{2}=\left\{X_{3}=X_{1}\right\}, \quad A_{3}=\left\{X_{1}=X_{2}\right\} .
$$

Show that these events are pairwise independent but not independent.
(c) Let X_{1} and X_{2} be independent and have uniform distributions on $(0,1)$. Let

$$
W_{1}=\sqrt{-2 \ln X_{1}} \cos \left(2 \pi X_{2}\right), \quad W_{2}=\sqrt{-2 \ln X_{1}} \sin \left(2 \pi X_{2}\right) .
$$

Show that W_{1} and W_{2} are independent and have standard normal distributions.
3. Let $\left\{X_{n}\right\}$ be a sequence of random variables and X a random variable.
(a) State the following definitions: convergence in probability $\left(X_{n} \xrightarrow{P} X\right)$, convergence almost surely $\left(X_{n} \xrightarrow{\text { a.s. }} X\right)$, convergence in L^{p} norm $\left(X_{n} \xrightarrow{L^{p}} X\right)$, and convergence in distribution $\left(X_{n} \xrightarrow{D} X\right)$.
(b) Draw a diagram to illustrate the relationship between these modes of convergence.
(c) Prove that if $X_{n} \xrightarrow{P} X$ then there exists a subsequence $\left\{X_{n_{k}}\right\}$ such that $X_{n_{k}} \xrightarrow{\text { a.s. }} X$ as $k \rightarrow \infty$.
4. (a) Let $\left\{X_{n}\right\}$ be a sequence of independent random variables with $E X_{i}=\mu$ and $\operatorname{var}\left(X_{i}\right) \leq$ $C<\infty$. Prove that

$$
\frac{S_{n}}{n} \xrightarrow{L^{2}} \mu
$$

where $S_{n}=X_{1}+\cdots+X_{n}$.
(b) Let f be a continuous function on $[0,1]$ and let

$$
f_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right)
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$, be the Bernstein polynomial of degree n associated with f. Prove that as $n \rightarrow \infty$,

$$
\max _{x \in[0,1]}\left|f_{n}(x)-f(x)\right| \rightarrow 0
$$

5. Let $\left\{X_{n}\right\}$ be a sequence of random variables and X a random variable.
(a) Prove that if $X_{n} \xrightarrow{P} X$ then $X_{n} \xrightarrow{D} X$.
(b) Prove that if $X_{n} \xrightarrow{D} c$ and c is a constant than $X_{n} \xrightarrow{P} X$.
(c) Let $\left\{X_{n}\right\}$ be independent and identically distributed with $E\left(X_{1}\right)=m<\infty$. Prove that

$$
\frac{S_{n}}{n} \xrightarrow{P} m
$$

where $S_{n}=X_{1}+\cdots+X_{n}$.

