- 1. A compact connected surface S has a subdivision with V vertices, E edges and F faces.
 - (i) Define the Euler characteristic $\chi(S)$ of S.
 - (ii) Suppose that each vertex lies on at most 4 edges and that no edge starts and ends at the same vertex. Let s denote the number of vertices which lie on at most 3 edges. Show that $s \leq 4V 2E$.
 - (iii) Suppose moreover that each face has four sides. Show now that $s \leq 4\chi(S)$. Hence deduce that no such subdivision is possible for a sphere with g handles when $g \geq 2$.
 - (iv) Give an example to show that there is such a subdivision of the torus.
- 2. Let $r: V \to \mathbb{R}^3$ parametrise a smooth patch of surface with first fundamental form $E du^2 + 2F du dv + G dv^2$.
 - (i) Prove that r is area-preserving if and only if $EG F^2 = 1$.
 - (ii) Let $f: \mathbb{R} \to \mathbb{R}$ be smooth and strictly positive. Let $g: \mathbb{R} \to \mathbb{R}$ be smooth and strictly increasing. The map $r(u, v) = (g(u), f(g(u)) \cos v, f(g(u)) \sin v)$ parametrises the surface of revolution corresponding to f.
 - (a) Prove that r is area preserving if and only if

$$g'^{2} (1 + (f' \circ g)^{2}) (f \circ g)^{2} = 1$$

(b) Let $h: \mathbb{R} \to \mathbb{R}$ be smooth function satisfying

$$h' = (1 + f'^2)^{1/2} f.$$

Explain briefly why h is invertible.

- (c) Prove that taking g to be the inverse to h makes the parametrisation r area preserving
- 3. Let $r: V \to \mathbb{R}^3$ parametrise a smooth patch of surface S, with positive unit normal $n: V \to S^2$. Write the first and second fundamental forms of S as $E du^2 + 2F du dv + G dv^2$ and $L du^2 + 2M du dv + N dv^2$ respectively.
 - (i) State a formula for the Gaussian curvature of S in terms of the coefficients of the two fundamental forms.
 - (ii) Let $f: V \to \mathbb{R}$ be a smooth function with $f(u, v) \geq 0$ for all $(u, v) \in V$ and $f(u_0, v_0) = 0$. Consider the map $\widetilde{r}: V \to \mathbb{R}^3$ given by $\widetilde{r} = r + fn$. You may assume that \widetilde{r} parametrises a smooth patch of surface \widetilde{S} .
 - (a) Prove that at (u_0,v_0) the positive unit normals to S and \widetilde{S} agree.
 - (b) Let K, \widetilde{K} denote the Gaussian curvatures of S, \widetilde{S} respectively. Prove that

$$\widetilde{K}(u_0, v_0) = K(u_0, v_0) + \frac{f_{uu}f_{vv} - f_{uv}^2}{EG - F^2} + \frac{Lf_{vv} + Nf_{uu} - 2Mf_{uv}}{EG - F^2}$$

where all terms on the right hand side are evaluated at (u_0, v_0) .

- 4. (i) (a) State a theorem concerning the existence and uniqueness of geodesics.
 - (b) Describe, with justification, all the geodesics on the unit sphere S^2 .
 - (ii) You may not quote any form of the Gauss-Bonnet theorem in answering this question. You may assume that S^2 has area 4π .
 - (a) Let $a,b\in S^2$ be diametrically opposite points. Let γ_1 and γ_2 be geodesics of length π , each starting at a and ending at b and making an angle α at a. Prove that the area of the wedge-shaped region enclosed by γ_1 and γ_2 is 2α . [Hint: What proportion of the sphere does the wedge cover?]
 - (b) Let $p,q,r\in S^2$ be distinct points. Let T be the triangular region whose boundary is made up by the geodesics joining p,q,r in pairs. Let the interior angles of T be $\alpha_1,\alpha_2,\alpha_3$. Prove that the area of T is $\alpha_1+\alpha_2+\alpha_3-\pi$. [Hint: Consider the six wedges made by extending the sides of T in both directions. What regions are multiply covered by the union of the wedges?]

- 5. Let S be a smooth surface with Gaussian curvature K.
 - (i) State the local Gauss-Bonnet theorem for a smooth curvilinear polygon $R \subset S$ with boundary γ , n sides and interior angles $\alpha_1, \ldots, \alpha_n$.
 - (ii) Let $C_{a,b} = \{(x,y,z) : a < x < b, \quad y^2 + z^2 = 1\}$ denote a cylinder of length b-a. Suppose that there is a diffeomorphism $f \colon C_{a,b} \to S$ and that, moreover, f is an isometry when restricted to $C_{a,a+\epsilon}$ and $C_{b-\epsilon,b}$ for some small ϵ (i.e, f is an isometry near the ends of the cylinder). Prove that

$$\int_{S} K \, \mathrm{d}A = 0.$$

[Hint: Let $R' \subset C_{a,b}$ be the four-sided polygon with sides the curves $(x = a + \epsilon/2)$, $(x = b - \epsilon/2)$ and (y = 1, z = 0) twice (once in each direction). Consider the image of R' under f.]