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1. (i) Define what it means for a subset of R to be, Basic, Outer, Inner and Integrable.

(ii) Define the measure of a basic set,and the measure of an outer set.

(iii) Prove that a countable set is outer and has measure zero

(iv) Let a ∈ R and let E be an integrable set. Prove that the set

a+ E = {a+ e : e ∈ E}

is integrable and that μ(E) = μ(a+ E).

(v)Describe the construction of Cantors Middle Thirds set and prove that it is an

inner set with zero measure.

2. (i) Define what it means for a function f : R −→ R to be upper. Define
∫
R
f for an upper

function, f .

(ii) Let f and g be upper functions. Prove that f ∧ g is an upper function.

(iii) Prove that a non-negative continuous function is an upper function.

(iv) Give an example of a real valued function of a real variable which is not an upper function.

3. (i) Define what it means for a function to be measurable.

(ii)Using any of the theorems proved in the course, which you should clearly state,

prove that a monotone increasing function is measurable.

(iii) Let h be a non-negative measurable function and F an integrable set.

Suppose that |h| ≤M on F . Prove that hIF is integrable. You can assume that
if g is integrable and a set F is integrable then gIF is integrable.

(iv) State the Dominated Convergence Theorem and use it to prove the following:

A sequence of non-negative measurable functions, (fn) converge pointwise to the

function f on the integrable set E. And, there is a strictly positive number M such that

∀n ∈ N, |fn| ≤M

on the set E. Then fIE is integrable

4. (i)State the monotone convergence theorem.

(ii) Confirm that for 0 < x < 1,we have

1

1 + x
=

∞∑

n=0

(−x)n =
∞∑

n=0

x2n(1− x)

(iii) Deduce that

log 2 =

∫ 1

0

1

1 + x
=

∞∑

n=1

(−1)n+1

n

(iv) Let (fn) be a sequence of non-negative integrable functions for which

sup
k

inf{
∫

R

fn : n ≥ k} <∞.



For each natural number k, define gk(x) = inf{fn(x) : n ≥ k}. Assuming that the minimum of
two integrable functions is itself an integrable function, prove that gk is an integrable function.

Deduce that ∫

R

gk ≤ inf{
∫

R

fr : r ≥ k}

and that ∫

R

lim
k→∞

gk ≤ lim
k→∞

inf{
∫

R

fn : n ≥ k}.

5. (i) State the dominated convergence theorem.

(ii) Let 0 < θ ≤ π and 1
2
≤ r ≤ 1. Show that

r2 + (1− 2r) cos θ ≥ 0.

(iii) Deduce from this that
θ2(1− r2)

1− 2r cos θ + r2
≤
(1− r2)θ2

1− cos θ
.

(iv) Prove that the function
(1− r2)θ2

1− cos θ
I(0,π](θ)

is integrable.

(v) Let (sn) be a sequence of real numbers with
1
2
≤ sn ≤ 1 and sn −→ 1 as n −→∞. Prove

that

lim
n−→∞

∫ π

0

θ2(1− s2n)
1− 2sn cos θ + s2n

dθ = 0.
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