M3P17 exam 2007

1. Define what is meant by a linear code of length n, dimension k, which corrects e errors.

State (but do not prove) the Hamming bound and the Gilbert-Varshamov bound.

For each of the following statements, say whether it is true or false, justifying your answer. State any standard results you use.
(i) There exists a linear code of length 20 and dimension 13 which corrects 2 errors.
(ii) There exists a linear code of length 20 and dimension 9 which corrects 2 errors.
(iii) There exists a linear code of length 10 and dimension 3 which corrects 2 errors.
(iv) There exists a linear code of length 10 and dimension 2 which corrects 3 errors.
2. Define the following:
an e-perfect code of length n
a t-design.
Suppose that C is a linear code of length 24 , dimension 12, and minimum distance 8.
(a) Let C^{\prime} be the code of length 23 consiting of all the codewords in C with their last digit deleted. Prove that C^{\prime} is 3 -perfect.
(b) Let X be the set of 24 coordinate positions in \mathbb{Z}_{2}^{24}, and for a codeword $c \in C$ of weight 8 , define B_{c} to be the subset of X consisting of the positions of the eight 1 's in c. Define \mathcal{B} to be the collection of all such subsets B_{c} $(c \in C)$. Prove that \mathcal{B} is a 5 -design.
(c) Deduce that the number of codewords in C of weight 8 is equal to 759 .
3. Let Γ be a graph with a finite set of vertices. Assume that any two vertices joined by an edge have no common neighbours, and any two vertices not joined by an edge have exactly 1 common neighbour. Assume also that there is no vertex which is joined to all the others.
(i) Prove that Γ is regular.
(ii) Let k be the valency of Γ, and let v be the number of vertices. Prove that $v=k^{2}+1$.
(iii) Gives examples of such a graph Γ for $k=2$ and $k=3$.
4. Define what is meant by a strongly regular graph with parameters (v, k, a, b).

Let Γ be a strongly regular graph with parameters $(v, k, 0,3)$, and assume $k>3$. Stating any standard results you require, prove the following.
(i) $v=\frac{1}{3}\left(k^{2}+2 k+3\right)$.
(ii) $4 k-3$ is a square (of an integer).
(iii) $\sqrt{4 k-3}$ divides k^{2}.
(iv) $k=21$.
5. Let $V=\mathbb{Z}_{2}^{n}$, a vector space of dimension n over \mathbb{Z}_{2}. Assume that $n \geq 3$.
(i) State and prove a formula for the number of 2-dimensional subspaces of V.
(ii) Define a design as follows: the points are the vectors in V, and the blocks are all subsets of the form $v+W$, where $v \in V$ and W is a 2-dimensional subspace of V. (Recall that $v+W=\{v+w: w \in W\}$.)

Prove that these blocks form a 3-design, and find its parameters.
(iii) Calculate the total number of blocks of the design in part (ii). Given a pair of vectors $v, w \in V$, how many blocks are there containing both v and w ?
(iv) Prove that the design in part (ii) is not a 4-design.

