Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)
May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3P17/M4P17

Discrete Mathematics

Date: Tuesday, 30th May 2006
Time: $10 \mathrm{am}-12$ noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used

1. Let $\mathbb{Z}_{2}=\{0,1\}$ be the field of order 2 and $\mathbb{Z}_{2}^{n}=\left\{x:=\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{Z}_{2}\right\}$ be an n-dimensional vector space over \mathbb{Z}_{2}. For $x, y \in \mathbb{Z}_{2}^{n}$ define the Hamming distance $d(x, y)$ and the weight $w t(x)$.
Prove the following:
(i) $d(x+z, y+z)=d(x, y)$ and $d(x, y)=w t(x+y)$ for all $x, y, z \in \mathbb{Z}_{2}^{n}$;
(ii) if σ is a permutation of $\{1,2, \ldots, n\}$ and $x^{\sigma}=\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ then $d\left(x^{\sigma}, y^{\sigma}\right)=d(x, y)$ for all $x, y \in \mathbb{Z}_{2}^{n}$;
(iii) given $0 \leq i, j, k \leq n$ and $x, y \in \mathbb{Z}_{2}^{n}$ with $d(x, y)=k$ then the number $p_{i j}^{k}$ of $z \in \mathbb{Z}_{2}^{n}$ satisfying $d(x, z)=i, d(y, z)=j$ is independent of the choice of x and y.

What is meant by a code C of length n which corrects e errors?
Define the minimal distance $d(C)$ of C, and state a result linking $d(C)$ and e.
2. Prove the Gilbert-Varshamov bound: if n, m and e are positive integers which satisfy

$$
1+(n-1)+\binom{n-1}{2}+\cdots+\binom{n-1}{e-2}<2^{n-m}
$$

then there exists a linear code C of length n, dimension m, with $d(C) \geq e$.
Consider linear codes C of length 10 which correct 2 errors.
(i) Prove that there exists such a code C with $\operatorname{dim}(C)=2$.
(ii) Is there such a code with $\operatorname{dim}(C)=5$? (Justify your answer.)
3. Let $v>k>\lambda_{2}$ be positive integers.

What is meant by a 2-design with parameters $\left(v, k, \lambda_{2}\right)$?
Let (X, \mathcal{B}) be a 2-design with parameters $\left(v, k, \lambda_{2}\right)$. Show that every element of X lies in the same number λ_{1} of blocks. Show also that if b is the number of blocks then

$$
b k=v \lambda_{1} \text { and } \lambda_{1}(k-1)=\lambda_{2}(v-1) .
$$

When is (X, \mathcal{B}) said to be symmetric?
Let A be a $v \times v$ matrix with all entries 0 and 1 (treated as integers) such that

$$
\begin{gathered}
J A=k J \\
A A^{T}=\left(\lambda_{1}-\lambda_{2}\right) I+\lambda_{2} J
\end{gathered}
$$

(where I is the identity matrix and J is the matrix with all entries 1). Prove that there exists a symmetric 2 -design with parameters $\left(v, k, \lambda_{2}\right)$ having A as its incidence matrix.
Deduce from the above that in a symmetric 2-design any two distinct blocks have the same number of elements in common.
4. Let G be a 3-perfect linear code of length 23.

Let $G_{m}=\{g \in G \mid w t(g)=m\}$.
Calculate the numbers of codewords in G_{m} for $m=0,1,2,3,4,5,6,7$ and 8 .
For $g=\left(g_{1}, g_{2}, \ldots, g_{23}\right) \in G$ define the support of g as $\operatorname{sp}(g)=\left\{i \mid g_{i}=1\right\}$.
Let $X=\{1,2, \ldots, 23,24\}$ and let

$$
\mathcal{B}=\left\{s p(g) \mid g \in G_{8}\right\} \cup\left\{s p(g) \cup\{24\} \mid g \in G_{7}\right\} .
$$

Prove that (X, \mathcal{B}) is a 5 -design with parameters $(24,8,1)$.
5. Explain what is meant by a strongly regular graph with parameters (v, k, a, b).

Let U be a 4-dimensional vector space over \mathbb{Z}_{2}. Let $\Gamma=(V, E)$ be a graph such that V is the set of 2-dimensional subspaces in U and

$$
E=\{(x, y) \mid x, y \in V, \operatorname{dim}(x \cap y)=1\} .
$$

Show that Γ is strongly regular and calculate the parameters of Γ.
What are the eigenvalues of the adjacency matrix of Γ ?
You may use the following standard result.
If A is the adjacency matrix of a strongly regular graph with parameters (v, k, a, b) then A has just 3 distinct eigenvalues k, r, s, where r and s are the roots of

$$
x^{2}-(a-b) x-(k-b)=0 .
$$

