1. What is meant by a code C of length n which corrects e errors?

Define the minimal distance $d(C)$ of C, and state a result linking $d(C)$ and e.

Now let C be a linear code with check matrix A. Suppose that any $d-1$ columns of A are linearly independent. Prove that $d(C) \geq d$.

In each of the following cases, say whether or not there is a linear code satisfying the given conditions (give reasoning, stating any standard results you need):
(a) A linear code of length 11 , dimension 5 , correcting 2 error.
(b) A linear code of length 11, dimension 3, correcting 2 errors.
(c) A linear code of length 11 , dimension 4, correcting 2 errors.
2. Define an e-perfect code of length n.

Define an t-design
Suppose that C is an e-perfect linear code of length n,
Prove that the number of codewords in C of weight $2 e+1$ os equal to (the quotient of two binomial coefficients $\binom{n}{e+1}$ and $\binom{2 e+1}{e}$).
Let X be the set of n coordinate positions, and for $c \epsilon C$ of weight $2 e+1$ (i.e. $w t(c)=2 e+1$) let $S(c)$ be the set of positions in which c has a 1 . Show that the pair (X, B) where $B=\{S(c) / c \epsilon C, w t(c)=2 e+1\}$ form an $(e+1)$ designs with $\lambda_{e+1}=1$
3. What is meant by a 2 -design with parameters $\left(v, k, \lambda_{2}\right)$?

Show that if (X, B) is a 2-design then every point (an element of X) lies in the same number of λ_{1} of blocks. Show also that if b is the number of blocks then

$$
b \dot{k}=\nu \dot{\lambda}_{1} \text { and } \lambda_{1}(k-1)=\lambda_{2}(\nu-1)
$$

Now let (X, B) be a 2 -design with parameters $(\nu, 4,1)$
(a) Show that $\nu(\nu-1)$ is divisible by 12 .
(b) Show that if (X, B) is symmetric, then $\nu=13$.
(c) Give an example of a symmetric 2-design with parameters $(13,4,1)$.
4. Let $V=V_{n}$ be an n-dimensional vector space over field Z_{2} of two elements where $n>3$, and let $1 \leq m \leq n$.

How many subspaces of dimension m are there in V ?
Let X be the set of non-zero vectors in V.
For an m-dimensional subspace U in V define $B(U)$ to be the set of nonzero vectors contained in V. Let

$$
B=\{B(V) / V \text { is an } m \text {-dimensional in } v\}
$$

Prove that (X, B) is a 2-design and calculate its parameters. Is (X, B) a 3-design?

Let Y be the set of all vectors in V (including the zero vector).
Let $D=\{U+\nu / V$ is an m-dimensional subspace in V and $\nu \varepsilon V\}$ Prove that (Y, D) is a free design and calculate it's parameters. Is Y, D a 4-design?
5. Explain what is meant by a strongly regular graph with parameters (ν, k, a, b).

For $n \geq 5$, let $T(n)$ be the graph where vertices are the $\binom{n}{2}$ pairs of elements of $\{1,2, \ldots, n\}$, with pairs $\left\{i_{2}, j_{2}\right\}$ joined by one edge and only if $\left|\left\{i_{1}, j_{1}\right\} n\left\{i_{2}, j_{2}\right\}\right|=1$. Prove that $T(n)$ is a strongly regular graph, and find its parameters.

Stating any standard results you require, show that if Γ is a strongly regular graph of valency 12 with 28 vertices, then Γ must have the same parameters (v, k, a, b) as $T(8)$.

