1. What is meant by a code C of length n which corrects e errors?

Define the minimal distance d(C) of C, and state a result linking d(C) and e.

Now let C be a linear code with check matrix A. Suppose that any d-1 columns of A are linearly independent. Prove that $d(C) \ge d$.

In each of the following cases , say whether or not there is a linear code satisfying the given conditions (give reasoning, stating any standard results you need):

- (a) A linear code of length 11, dimension 5, correcting 2 error.
- (b) A linear code of length 11, dimension 3, correcting 2 errors.
- (c) A linear code of length 11, dimension 4, correcting 2 errors.
- 2. Define an e-perfect code of length n.

Define an t-design

Suppose that C is an e-perfect linear code of length n,

Prove that the number of codewords in C of weight 2e + 1 os equal to (the quotient of two binomial coefficients $\binom{n}{e+1}$ and $\binom{2e+1}{e}$).

Let X be the set of n coordinate positions, and for $c \in C$ of weight 2e + 1

(i.e. wt(c) = 2e + 1) let S(c) be the set of positions in which c has a 1. Show that the pair (X, B) where $B = \{S(c)/c\epsilon C, wt(c) = 2e + 1\}$ form an (e + 1) designs with $\lambda_{e+1} = 1$

3. What is meant by a 2-design with parameters (v, k, λ_2) ?

Show that if (X, B) is a 2-design then every point (an element of X) lies

in the same number of λ_1 of blocks. Show also that if b is the number of blocks then

 $b\dot{k} = \nu\dot{\lambda}_1$ and $\lambda_1(k-1) = \lambda_2(\nu-1)$

Now let (X, B) be a 2-design with parameters $(\nu, 4, 1)$

- (a) Show that $\nu(\nu 1)$ is divisible by 12.
- (b) Show that if (X, B) is symmetric, then $\nu = 13$.
- (c) Give an example of a symmetric 2-design with parameters (13, 4, 1).
- 4. Let $V = V_n$ be an *n*-dimensional vector space over field Z_2 of two elements where n > 3, and let $1 \le m \le n$.

How many subspaces of dimension m are there in V?

Let X be the set of non-zero vectors in V.

For an *m*-dimensional subspace U in V define B(U) to be the set of nonzero vectors contained in V. Let $B = \{B(V)/V \text{ is an } m \text{-dimensional in } v\}$

Prove that (X, B) is a 2-design and calculate its parameters. Is (X, B) a 3-design?

Let Y be the set of all vectors in V (including the zero vector).

Let $D = \{U + \nu/V \text{ is an } m \text{-dimensional subspace in } V \text{ and } \nu \in V\}$ Prove that (Y, D) is a free design and calculate it's parameters. Is Y, D a 4-design?

5. Explain what is meant by a strongly regular graph with parameters (ν, k, a, b) .

For $n \geq 5$, let T(n) be the graph where vertices are the $\binom{n}{2}$ pairs of elements of $\{1, 2, ..., n\}$, with pairs $\{i_2, j_2\}$ joined by one edge and only if $|\{i_1, j_1\}n\{i_2, j_2\}| = 1$. Prove that T(n) is a strongly regular graph, and find its parameters.

Stating any standard results you require, show that if Γ is a strongly regular graph of valency 12 with 28 vertices, then Γ must have the same parameters (v, k, a, b) as T(8).