1. State a criterion in terms of its minimal polynomial for an algebraic number to be an algebraic integer.

Let d be a square-free integer not equal to 1. Determine, with proof, the ring of algebraic integers in $\mathbb{Q}(\sqrt{d})$.

2. Prove that the class group of $\mathbb{Q}(\sqrt{-23})$ is cyclic of order 3.

You may assume any theorems from the course that you need.

- 3. Let K be a quadratic number field, and let R be its ring of integers.
 - (i) Define the norm ||I|| of an ideal I of R.
 - (ii) State, without proof, a result relating the norm of the principal ideal (α) , $\alpha \in R$, to the norm of the element α .
 - (iii) Prove that if R contains a unit of norm -1, then it contains infinitely many such units.
 - (iv) Let $K = \mathbb{Q}(\sqrt{14})$. Determine, with proof, whether R contains a unit of norm -1.
- 4. Find all solutions to the equation $y^2 = x^3 13$ with $x, y \in \mathbb{Z}$.

You may assume that the class number of $\mathbb{Q}(\sqrt{-13})$ is 2, and that the ring of integers in $\mathbb{Q}(\sqrt{-13})$ is $\mathbb{Z}[\sqrt{-13}]$.

5. Let K be a number field, and R its ring of integers. Prove that if A, B, and C are non-zero ideals of R such that AB = AC, then B = C.

You may assume that for any proper ideal I of R there exists a $\gamma \in K$, $\gamma \notin R$, such that $\gamma I \subset R$. You should not assume that every ideal is a product of prime ideals.