Imperial College

London

UNIVERSITY OF LONDON
 BSc and MSci EXAMINATIONS (MATHEMATICS)
 May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3P15/M4P15

Algebraic Number Theory

Date: Thursday, 1st June 2006 Time: $2 \mathrm{pm}-4 \mathrm{pm}$

[^0]1. (i) Give the definitions of
(a) an algebraic number,
(b) an algebraic integer,
(c) a number field.
(ii) If K is a number field and $\alpha \in K$, then define the trace $\operatorname{Tr}_{K / \mathbb{Q}}(\alpha)$ and the norm $N_{K / \mathbb{Q}}(\alpha)$ of α.
(iii) Find (without proof) a number field K and an algebraic integer $\alpha \in K$ such that $\operatorname{Tr}_{K / \mathbb{Q}}(\alpha)=2$ and $N_{K / \mathbb{Q}}(\alpha)=-1$.
(iv) If K is a number field and $\alpha \in K$ is such that $\operatorname{Tr}_{K / \mathbb{Q}}(\alpha)=2$ and $N_{K / \mathbb{Q}}(\alpha)=-1$, is α necessarily an algebraic integer? Give either a proof or a counterexample. (You may assume any results from the course that you need.)
2. Let d be a squarefree integer not equal to 1 . Determine, with proof, the ring of algebraic integers in $\mathbb{Q}(\sqrt{d})$.
You may assume that an algebraic number is an algebraic integer if and only if its minimal polynomial has integral coefficients.
3. Prove that the class group of $\mathbb{Q}(\sqrt{-17})$ is cyclic of order 4 .

You may assume any theorems from the course that you need. In particular, you may assume that every ideal class contains an ideal of norm at most 5. Hint: are there principal ideals of norm 18?
4. Show that the equation $y^{3}=x^{2}+5$ has no solutions with $x, y \in \mathbb{Z}$.

You may assume that the class number of $\mathbb{Q}(\sqrt{-5})$ is 2 , and that the ring of integers in $\mathbb{Q}(\sqrt{-5})$ is $\mathbb{Z}[\sqrt{-5}]$.
5. Let K be a number field, and R its ring of integers.
(i) Prove that if I is a nonzero ideal of R, then there exists a nonzero ideal J of R such that $I J$ is principal.
You may assume that for any proper ideal A of R there exists a $\gamma \in K, \gamma \notin R$ such that $\gamma A \subseteq R$, and that if $\gamma \in K$ is such that $\gamma A \subseteq A$, then in fact $\gamma \in R$.
(ii) Deduce from (i) that if A, B are nonzero ideals of R, then $A \mid B$ if and only if $B \subseteq A$.

[^0]: Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

 Calculators may not be used.

