1. (a) Give definitions of the following:
(i) An algebraic number.
(ii) An algebraic integer.
(iii) A number field.
(b) Prove from the definition that $1+\sqrt{2}+\sqrt{3}$ is an algebraic integer.
(c) Prove that if K is a number field and $\alpha \in K$, then α is an algebraic number.
(d) If K is a number field, and $\alpha \in K$, define the norm $N_{K / \mathbb{Q}}(\alpha)$ and the trace $T_{K / \mathbb{Q}}(\alpha)$.
(e) Prove that if K is a number field and $\alpha, \beta \in K$ then $N_{K / \mathbb{Q}}(\alpha \beta)=N_{K / \mathbb{Q}}(\alpha) N_{K / \mathbb{Q}}(\beta)$ and $T_{K / \mathbb{Q}}(\alpha+\beta)=T_{K / \mathbb{Q}}(\alpha)+T_{K / \mathbb{Q}}(\beta)$.
2. Let $d \neq 1$ be a squarefree integer, and let $K=\mathbb{Q}(\sqrt{d})$. State a criterion in terms of $N_{K / \mathbb{Q}}(\alpha)$ and $T_{K / \mathbb{Q}}(\alpha)$ for $\alpha \in K$ to be an algebraic integer and find, with proof, the algebraic integers of K.
3. Let K be a number field, and R its ring of integers, and let P be a nonzero prime ideal of R. Prove that P is a maximal ideal. Hint: You may assume that a finite integral domain is a field, and that R is a free abelian group of rank n, where n is the degree of K.
4. Show that the class number of $\mathbb{Q}(\sqrt{-6})$ is 2 , given the information that every ideal class contains an integral ideal I with $\|I\|<4$. You may assume standard results on the structure of the ring of integers of a number field.
5. Show that the only solutions of the Diophantine equation

$$
y^{2}+11=x^{3} \quad(x, y \in \mathbb{Z})
$$

are $(x, y)=(3, \pm 4),(15, \pm 58)$. Hint: You may assume that the class number of $\mathbb{Q}(\sqrt{-11})$ is 1 , that the ring of integers in $\mathbb{Q}(\sqrt{-11})$ is $\mathbb{Z}[(1+\sqrt{-11}) / 2]$, and that the only units in $\mathbb{Z}[(1+\sqrt{-11}) / 2]$ are ± 1.

