1. (i) If u, v are positive integers, $\operatorname{hcf}(u, v)=1$, and $u v$ is a perfect square, show that u and v are both perfect squares.
(ii) Let x, y, z be positive integers with no common divisors such that

$$
x^{2}+y^{2}=z^{2} .
$$

Show that either x or y is even. Assume now that x is even. Prove that there exist positive integers u, v with $\operatorname{hcf}(u, v)=1$ and such that $z-y=2 u^{2}, z+y=2 v^{2}$. Hence, show that $x=2 u v, y=v^{2}-u^{2}$ and $z=v^{2}+u^{2}$. Conversely, if u, v are given, show that the numbers x, y and z given by these formulas satisfy $x^{2}+y^{2}=z^{2}$.
2. In this question, you may use without proof the following facts: There are constants $\gamma>0$ and $A>0$ such that

$$
\begin{aligned}
\sum_{n \leq x} \frac{1}{n} & =\log x+\gamma+O\left(\frac{1}{x}\right), \text { and } \\
\sum_{n \leq x} \frac{\log n}{n} & =\frac{1}{2} \log ^{2} x+A+O\left(\frac{\log x}{x}\right)
\end{aligned}
$$

For $n \geq 1$ integer, denote by $d(n)=\sum_{d \mid n} 1$ the number of divisors of n. Prove that

$$
\sum_{n \leq x} \frac{d(n)}{n}=\frac{1}{2} \log ^{2} x+2 \gamma \log x+O(1)
$$

3. In this question, you may assume without proof any properties of the Legendre symbol, as long as you state them correctly. State and prove a condition characterising those primes p which can be expressed in the form

$$
p=x^{2}+2 y^{2}
$$

with x, y integers.
4. In the ring $\mathbb{Z}[i]$ of Gaussian integers, we say $a \equiv b \bmod m$ if m divides $a-b$.
(i) Find a Gaussian integer x such that

$$
(1+2 i) x \equiv 1 \quad \bmod 3+3 i
$$

In what sense is your solution unique? (Justify your answer.)
(ii) Find a Gaussian integer x such that

$$
\begin{aligned}
& x \equiv 1 \quad \bmod 1+2 i \\
& x \equiv 3 \quad \bmod 3+3 i .
\end{aligned}
$$

In what sense is your solution unique? (Justify your answer.)
5. Let $\alpha=\sqrt{2}+\sqrt{3}$. In this question, you may assume that

$$
f(x)=x^{4}-10 x^{2}+1
$$

is a rational polynomial of minimal degree such that $f(\alpha)=0$.
(i) Find a polynomial $g(x)$ such that $f(x)=(x-\alpha) g(x)$.
(ii) Find an explicit constant K such that if p / q is any rational number with $|(p / q)-\alpha| \leq$ 1 , then

$$
\left|g\left(\frac{p}{q}\right)\right| \leq K
$$

(iii) Find an explicit constant C such that for all rational numbers p / q

$$
\left|\frac{p}{q}-\alpha\right|>\frac{C}{q^{4}}
$$

(Justify your answer.)

