Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3P13/M4P13

Rings and Modules

Date: Wednesday, 24th May 2006

Time: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

In this paper, R denotes an arbitrary ring, possibly noncommutative, unless otherwise stated. All modules are taken to be left modules.

1. Define

- (i) a simple ring;
- (ii) a ring homomorphism $\theta : R \to S$.

Verify that the kernel $\text{Ker}(\theta)$ is a twosided ideal in R.

Is $Im(\theta)$ a twosided ideal in S?

Show that if R is simple and $S \neq 0$, then any ring homomorphism $\theta : R \rightarrow S$ must be injective.

Now let F be a field and let $R = M_2(F)$ be the ring of 2×2 matrices over F. Show that R is simple.

Find a ring $S \neq R$ so that there is a ring homomorphism $R \rightarrow S$, defining your homomorphism explicitly.

2. Let M and N be R-modules. Say what is meant by an R-module homomorphism $\theta : M \to N$. Let L be a submodule of M. Define the quotient module M/L, giving the addition and scalar multiplication explicitly. (You are not expected to verify the module axioms.)

Show that there is an injective induced homomorphism

$$\overline{\theta}: M/\operatorname{Ker}(\theta) \to N \text{ with } \overline{\theta}\pi = \theta$$

- you are expected to verify that your homomorphism is well-defined and injective.

Suppose that M has two distinct maximal submodules $L,P. \ {\rm Show}$ that there is an $R{\rm -module}$ isomorphism

$$L/L \cap P \cong M/P.$$

Now let $T = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in F \right\}$ be the ring of 2×2 upper triangular matrices over a field F. Find two distinct maximal left ideals H, J of T, and identify the factor modules T/H and T/J – you should say how an element of T acts on T/H and on T/J.

- 3. Define the terms
 - (i) A *Noetherian* left *R*-module;
 - (ii) An Artinian left R-module.

State without proof two alternative characterizations of a Noetherian module.

Let M be a left R-module with submodule L and put N = M/L. Show that M is Noetherian if and only if both L and N are Noetherian.

Give (with reasoning) examples of

- (a) A ring that is neither left Artinian nor left Noetherian.
- (b) A ring that is not Artinian that has a nonzero Artinian module.
- (c) A ring that is Artinian that has a non-Artinian module.
- (d) A Noetherian ring that has a non-Noetherian Artinian module.

4. In this question, you are not expected to check the ring or module axioms when you claim that something is a ring or module.

Let R_1, \ldots, R_n be a finite set of rings. Define their *direct product* $R = R_1 \times \cdots \times R_n$, giving the addition and multiplication. Show that $R = H_1 \oplus \cdots \oplus H_n$ where each H_i is both a twosided ideal of R and a ring, and $R_i \cong H_i$ as a ring.

Let M be a left R-module. Show that $M = M_1 \oplus \cdots \oplus M_n$ where each M_i is an R_i -module. Explain how a set M_1, \ldots, M_n with each M_i an R_i -module gives rise to an R-module.

Let $k \ge 1$ be an integer. Give an example of a ring R that has a composition series (as left R-module) of length k, all of whose composition factors are isomorphic – a proof is not required, but you should write down the composition series.

Give, with proof, an example of a ring S with a composition series of length $k \ge 1$ such that no two composition factors are isomorphic as S-modules.

- 5. Let R be a commutative ring. Define the following terms.
 - (i) A prime ideal P of R.
 - (ii) A multiplicatively closed subset of R.
 - (iii) The *nilradical* Nil(R) of R.

Verify that Nil(R) is an ideal of R, and compute Nil(R/Nil(R)).

Show that the complement $R \setminus P$ of a prime ideal P is multiplicatively closed.

Let S be multiplicatively closed. Show further that if I is an ideal which is maximal among the set Σ of ideals in R with $I \cap S = \emptyset$, then I is prime.

Deduce that $Nil(R) = \bigcap \{P \mid P \text{ is a prime ideal} \}.$

Now let F be a field and put $S = F[\sigma, \tau]$, with $\sigma^2 = \tau^2 = s^2\tau^2 = 0$. (In other words, $S = F[X, Y]/X^2F[X, Y] + Y^2F[X, Y] + (XY)^2F[X, Y]$.) Let $R = S \times S$, the direct product of rings.

Find Nil(S), and hence find Nil(R) and R/Nil(R).