Imperial College London

UNIVERSITY OF LONDON
BSc and MSci EXAMINATIONS (MATHEMATICS)
May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3P13/M4P13

Rings and Modules

Date: Wednesday, 24th May 2006
Time: $10 \mathrm{am}-12$ noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

In this paper, R denotes an arbitrary ring, possibly noncommutative, unless otherwise stated. All modules are taken to be left modules.

1. Define
(i) a simple ring;
(ii) a ring homomorphism $\theta: R \rightarrow S$.

Verify that the kernel $\operatorname{Ker}(\theta)$ is a twosided ideal in R.
Is $\operatorname{Im}(\theta)$ a twosided ideal in S ?
Show that if R is simple and $S \neq 0$, then any ring homomorphism $\theta: R \rightarrow S$ must be injective.

Now let F be a field and let $R=M_{2}(F)$ be the ring of 2×2 matrices over F. Show that R is simple.
Find a ring $S \neq R$ so that there is a ring homomorphism $R \rightarrow S$, defining your homomorphism explicitly.
2. Let M and N be R-modules. Say what is meant by an R-module homomorphism $\theta: M \rightarrow N$.

Let L be a submodule of M. Define the quotient module M / L, giving the addition and scalar multiplication explicitly. (You are not expected to verify the module axioms.)
Show that there is an injective induced homomorphism

$$
\bar{\theta}: M / \operatorname{Ker}(\theta) \rightarrow N \text { with } \bar{\theta} \pi=\theta
$$

- you are expected to verify that your homomorphism is well-defined and injective.

Suppose that M has two distinct maximal submodules L, P. Show that there is an R-module isomorphism

$$
L / L \cap P \cong M / P .
$$

Now let $T=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in F\right\}$ be the ring of 2×2 upper triangular matrices over a field F. Find two distinct maximal left ideals H, J of T, and identify the factor modules T / H and T / J - you should say how an element of T acts on T / H and on T / J.
3. Define the terms
(i) A Noetherian left R-module;
(ii) An Artinian left R-module.

State without proof two alternative characterizations of a Noetherian module.
Let M be a left R-module with submodule L and put $N=M / L$. Show that M is Noetherian if and only if both L and N are Noetherian.
Give (with reasoning) examples of
(a) A ring that is neither left Artinian nor left Noetherian.
(b) A ring that is not Artinian that has a nonzero Artinian module.
(c) A ring that is Artinian that has a non-Artinian module.
(d) A Noetherian ring that has a non-Noetherian Artinian module.
4. In this question, you are not expected to check the ring or module axioms when you claim that something is a ring or module.
Let R_{1}, \ldots, R_{n} be a finite set of rings. Define their direct product $R=R_{1} \times \cdots \times R_{n}$, giving the addition and multiplication. Show that $R=H_{1} \oplus \cdots \oplus H_{n}$ where each H_{i} is both a twosided ideal of R and a ring, and $R_{i} \cong H_{i}$ as a ring.
Let M be a left R-module. Show that $M=M_{1} \oplus \cdots \oplus M_{n}$ where each M_{i} is an R_{i}-module. Explain how a set M_{1}, \ldots, M_{n} with each M_{i} an R_{i}-module gives rise to an R-module.
Let $k \geq 1$ be an integer. Give an example of a ring R that has a composition series (as left R-module) of length k, all of whose composition factors are isomorphic - a proof is not required, but you should write down the composition series.

Give, with proof, an example of a ring S with a composition series of length $k \geq 1$ such that no two composition factors are isomorphic as S-modules.
5. Let R be a commutative ring. Define the following terms.
(i) A prime ideal P of R.
(ii) A multiplicatively closed subset of R.
(iii) The nilradical $\operatorname{Nil}(R)$ of R.

Verify that $\operatorname{Nil}(R)$ is an ideal of R, and compute $\operatorname{Nil}(R / \operatorname{Nil}(R))$.
Show that the complement $R \backslash P$ of a prime ideal P is multiplicatively closed.
Let S be multiplicatively closed. Show further that if I is an ideal which is maximal among the set Σ of ideals in R with $I \cap S=\emptyset$, then I is prime.
Deduce that $\operatorname{Nil}(R)=\bigcap\{P \mid P$ is a prime ideal $\}$.
Now let F be a field and put $S=F[\sigma, \tau]$, with $\sigma^{2}=\tau^{2}=s^{2} \tau^{2}=0$. (In other words, $S=F[X, Y] / X^{2} F[X, Y]+Y^{2} F[X, Y]+(X Y)^{2} F[X, Y]$.) Let $R=S \times S$, the direct product of rings.

Find $\operatorname{Nil}(S)$, and hence find $\operatorname{Nil}(R)$ and $R / \operatorname{Nil}(R)$.

