UNIVERSITY OF LONDON

Course:	M3P12		
Setter:	Zerbes		
Checker:	lvanov		
Editor:	Editor		
External:	Cremona		
Date:	April 12, 2007		

BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2007

M3P12

Representation theory

Setter's signature	Checker's signature	Editor's signature

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2007

M3P12

Representation theory

Date:

Time:

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- 1. Let (ρ_1, \mathbb{C}) be the trivial representation of S_4 , and let χ_1 be its character.
 - (i) Let V be the complex vector space with basis x_1, x_2, x_3, x_4 , and let (τ, V) be the representation of S_4 determined by

$$\tau(\sigma).x_i = x_{\sigma(i)}$$

for $i \in \{1, ..., 4\}$ and $\sigma \in S_4$. Let χ_{τ} be the character of ρ . Show that for all $\sigma \in S_4$, we have

$$\chi_{\tau}(\sigma) = |\{i \in \{1, 2, 3, 4\} : \sigma(i) = i\}|.$$

- (ii) Show that $(\tau, V) = (\rho_1, \mathbb{C}) \oplus (\rho_2, W)$ for some irreducible representation (ρ_2, W) .
- (iii) Define the sign representation (ρ_3, \mathbb{C}) of S_4 and calculate its character.
- (iv) Show that the representation (ρ_4, W) defined by

$$\rho_4(g).v = \rho_3(g)\rho_2(g).v$$

is irreducible.

Remark. You may assume that two elements in S_4 lie in the same conjugacy class if and only if they are of the same cycle type.

- 2. (i) Show from first principles that every irreducible representation of the cyclic group C_n of order n is 1-dimensional.
 - (ii) Decompose the regular representation of C_n explicitly as the sum of 1-dimensional representations.

- 3. Let G be a finite group and $\{\chi_i\}$ the set of its irreducible characters. Choose representatives g_j of the conjugacy classes of G, and denote by $Z(g_j)$ their centralizers.
 - (i) State the orthonormality and completeness relations for the χ_i .
 - (ii) Using part (i), show that

$$\sum_{i} \overline{\chi_i(g_j)} \chi_i(g_k) = \begin{cases} \mid Z(g_j) \mid & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases}$$

(iii) Let A be the matrix with $A_{ij} = \chi_i(g_j)$. Prove that

$$|\det A|^2 = \prod_j |Z(g_j)|.$$

Hint. Note that $|\det A|^2 = \overline{\det A} \cdot \det A$ and that $\det A = \det A^t$, where A^t denotes the transpose of A.

- 4. Let (ρ, V) be an irreducible representation of a group G.
 - (i) Define a G-homomorphism $V \rightarrow V$ and state and prove Schur's lemma.
 - (ii) Let Z be the center of G. Using Schur's Lemma, show that if $g \in Z$, then $\rho(g)$ is a scalar multiple of the identity.
 - (iii) Deduce that if G is commutative, then V is 1-dimensional.
- 5. Let G be a finite group, and let $H \leq G$ be a subgroup. Let V be the vector space whose basis vectors are the elements of G/H. Define an action of G on V by g.xH = (gx)H.
 - (i) Let χ_{ρ} by the character of the representation. Show that $\chi_{\rho}(g) = |\{xH : g \in xHx^{-1}\}|$.
 - (ii) Show that if H normal in G, then $\chi_{\rho}(g) = [G:H]$ if $g \in H$ and 0 otherwise.
 - (iii) Suppose that $H \neq G$. Show that V is not irreducible.

M3P12 Representation theory (2007)

Page 4 of 4