UNIVERSITY OF LONDON

Course: M3P12
Setter: Zerbes
Checker: Ivanov
Editor: Editor
External: Cremona
Date: April 12, 2007

BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2007

M3P12

Representation theory

Setter's signature	Checker's signature	Editor's signature

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)
 May-June 2007

 M3P12

 M3P12}

Representation theory

Date: Time:

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Let $\left(\rho_{1}, \mathbb{C}\right)$ be the trivial representation of S_{4}, and let χ_{1} be its character.
(i) Let V be the complex vector space with basis $x_{1}, x_{2}, x_{3}, x_{4}$, and let (τ, V) be the representation of S_{4} determined by

$$
\tau(\sigma) \cdot x_{i}=x_{\sigma(i)}
$$

for $i \in\{1, \ldots, 4\}$ and $\sigma \in S_{4}$. Let χ_{τ} be the character of ρ. Show that for all $\sigma \in S_{4}$, we have

$$
\chi_{\tau}(\sigma)=|\{i \in\{1,2,3,4\}: \sigma(i)=i\}| .
$$

(ii) Show that $(\tau, V)=\left(\rho_{1}, \mathbb{C}\right) \oplus\left(\rho_{2}, W\right)$ for some irreducible representation $\left(\rho_{2}, W\right)$.
(iii) Define the sign representation $\left(\rho_{3}, \mathbb{C}\right)$ of S_{4} and calculate its character.
(iv) Show that the representation $\left(\rho_{4}, W\right)$ defined by

$$
\rho_{4}(g) \cdot v=\rho_{3}(g) \rho_{2}(g) \cdot v
$$ is irreducible.

Remark. You may assume that two elements in S_{4} lie in the same conjugacy class if and only if they are of the same cycle type.
2. (i) Show from first principles that every irreducible representation of the cyclic group C_{n} of order n is 1 -dimensional.
(ii) Decompose the regular representation of C_{n} explicitly as the sum of 1-dimensional representations.
3. Let G be a finite group and $\left\{\chi_{i}\right\}$ the set of its irreducible characters. Choose representatives g_{j} of the conjugacy classes of G, and denote by $Z\left(g_{j}\right)$ their centralizers.
(i) State the orthonormality and completeness relations for the χ_{i}.
(ii) Using part (i), show that

$$
\sum_{i} \overline{\chi_{i}\left(g_{j}\right)} \chi_{i}\left(g_{k}\right)= \begin{cases}\left|Z\left(g_{j}\right)\right| & \text { if } j=k \\ 0 & \text { if } j \neq k\end{cases}
$$

(iii) Let A be the matrix with $A_{i j}=\chi_{i}\left(g_{j}\right)$. Prove that

$$
|\operatorname{det} A|^{2}=\prod_{j}\left|Z\left(g_{j}\right)\right|
$$

Hint. Note that $|\operatorname{det} A|^{2}=\overline{\operatorname{det} A} . \operatorname{det} A$ and that $\operatorname{det} A=\operatorname{det} A^{t}$, where A^{t} denotes the transpose of A.
4. Let (ρ, V) be an irreducible representation of a group G.
(i) Define a G-homomorphism $V \rightarrow V$ and state and prove Schur's lemma.
(ii) Let Z be the center of G. Using Schur's Lemma, show that if $g \in Z$, then $\rho(g)$ is a scalar multiple of the identity.
(iii) Deduce that if G is commutative, then V is 1 -dimensional.
5. Let G be a finite group, and let $H \leq G$ be a subgroup. Let V be the vector space whose basis vectors are the elements of G / H. Define an action of G on V by $g \cdot x H=(g x) H$.
(i) Let χ_{ρ} by the character of the representation. Show that $\chi_{\rho}(g)=\left|\left\{x H: g \in x H x^{-1}\right\}\right|$.
(ii) Show that if H normal in G, then $\chi_{\rho}(g)=[G: H]$ if $g \in H$ and 0 otherwise.
(iii) Suppose that $H \neq G$. Show that V is not irreducible.

M3P12 Representation theory (2007)

