Imperial College London

UNIVERSITY OF LONDON
BSc and MSci EXAMINATIONS (MATHEMATICS)
May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3P12/M4P12
Group Representation Theory
Date: Tuesday, 30th May 2006 Time: $2 \mathrm{pm}-4 \mathrm{pm}$

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. (a) Let G be a group. Define the notions of $\mathbb{C} G$-module, $\mathbb{C} G$-submodule. State (without proof) Maschke's theorem.
(b) Give a counterexample (with an explanation) to the statement of Maschke's theorem in the case of an infinite group.
(c) Let $G=C_{2} \times C_{2}$ be a direct product of two cyclic groups of order two, let a and b be the generators of these cyclic groups.
(i) Write down (without proof) a complete set of non-isomorphic irreducible $\mathbb{C} G$ modules V_{1}, \ldots, V_{k}.
(ii) Consider a 5-dimensional representation ρ of G given by

$$
\rho(a)=\left(\begin{array}{ccccc}
3 & 4 & 0 & 0 & 0 \\
-2 & -3 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), \quad \rho(b)=\left(\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right) .
$$

Decompose the corresponding $\mathbb{C} G$-module into a direct sum of irreducible $\mathbb{C} G$ submodules U_{1}, \ldots, U_{l}, and justify your answer. For each submodule U_{i} find an irreducible V_{j} from Part (i) which is $\mathbb{C} G$-isomorphic to it, with justification.
2. Let G be a finite group, let U and V be $\mathbb{C} G$-modules.
(i) Define the notion of $\mathbb{C} G$-homomorphism from U to V, define the vector space structure on the set $\operatorname{Hom}_{\mathbb{C} G}(U, V)$ of all $\mathbb{C} G$-homomorphisms from U to V.
(ii) Prove the version of Schur's lemma which states that any $\mathbb{C} G$-homomorphism from an irreducible $\mathbb{C} G$-module to itself is a multiplication by a constant.
(iii) Let U be an irreducible $\mathbb{C} G$-module, let $U=U_{1} \oplus U_{2} \oplus U_{3}$ where all the $\mathbb{C} G$-submodules U_{1}, U_{2}, U_{3} are $\mathbb{C} G$-isomorphic to V. Determine a basis of the space $\operatorname{Hom}_{\mathbb{C} G}(U, V)$ and find the dimension of this space. Present arguments to justify your answers.
3. Let G be a finite group.
(a) (i) Define the regular $\mathbb{C} G$-module, and write down the values of its character $\chi_{\text {reg }}$. Justify your answer.
(ii) Let V_{1}, \ldots, V_{k} be $\mathbb{C} G$-submodules of $\mathbb{C} G$ which form a complete set of nonisomorphic irreducible $\mathbb{C} G$-modules, let f_{1}, \ldots, f_{k} be the corresponding primitive central idempotents. Prove the formula

$$
f_{i}=\frac{\chi_{i}(e)}{|G|} \sum_{g \in G} \chi_{i}\left(g^{-1}\right) g,
$$

where χ_{i} is the character of the module $V_{i}, i=1, \ldots, k$. You can use without a proof the property that for all $i, j \leq k$,

$$
\rho_{i}\left(f_{j}\right)= \begin{cases}I_{\chi_{i}(e)}, & \text { if } i=j, \\ 0, & \text { if } i \neq j\end{cases}
$$

where $I_{\chi_{i}(e)}$ stands for the identity matrix of size $\chi_{i}(e)$, and ρ_{i} is the linear extension to $\mathbb{C} G$ of a representation corresponding to the module V_{i}. You can also use without a proof that $\chi_{\text {reg }}=\sum_{i=1}^{k} \chi_{i}(e) \chi_{i}$.
(b) Assume now that $k=2$ and consider a basis h_{1}, h_{2} of the centre $Z(\mathbb{C} G)$ such that

$$
h_{1}^{2}=h_{1}, \quad h_{2}^{2}=h_{2}, \quad h_{1} h_{2}=0 .
$$

Prove that the set $\left\{h_{1}, h_{2}\right\}$ is equal to the set $\left\{f_{1}, f_{2}\right\}$.
(You may assume that the primitive central idempotents form a basis of $Z(\mathbb{C} G)$ which satisfies $f_{1}^{2}=f_{1}, f_{2}^{2}=f_{2}, f_{1} f_{2}=0$.)
4. (a) Define the inner product $\langle\cdot, \cdot\rangle$ on the characters of a finite group G and state (without a proof) a result giving the possible values of $\langle\varphi, \psi\rangle$ for irreducible characters φ, ψ. Deduce that if a character Φ has a decomposition

$$
\Phi=\sum_{i=1}^{k} \lambda_{i} \chi_{i}
$$

where $\chi_{1}, \ldots, \chi_{k}$ are different irreducible characters, then $\lambda_{i}=\left\langle\Phi, \chi_{i}\right\rangle$.
(b) The symmetric group S_{4} has the following character table:

Conjugacy class:	e	(12)	(123)	(12)(34)	(1234)
Centralizer order:	24	4	3	8	4
χ_{1}	1	1	1	1	1
χ_{2}	1	-1	1	1	-1
χ_{3}	3	1	0	-1	-1
χ_{4}	3	-1	0	-1	1
χ_{5}	2	0	-1	2	0

(i) Express the character Φ given by the following values

$$
\Phi(e)=5, \Phi((12))=-1, \Phi((123))=2, \Phi((12)(34))=5, \Phi((1234))=-1
$$

as a linear combination of the irreducible characters.
(ii) Express the tensor square character $\chi=\Phi^{2}$, as well as the antisymmetric part χ_{a} of the character Φ as linear combinations of the irreducible characters.
5. (a) Let G be a finite group, g an element of G of order m, and χ a character of G of degree n. State without a proof the result on dimensions of irreducible modules of an abelian group. Deduce from it that $\chi(g)$ is a sum of $n m^{\text {th }}$ roots of unity.
(b) A group G of order 12 is known to have an irreducible character which is non-zero only on two conjugacy classes where it equals 3 and -1 . Making it clear which properties of the characters you use,
(i) Determine the number of conjugacy classes of G and the degrees of the irreducible characters.
(ii) Fill in any two rows and any two columns of the character table of G.
(iii) Complete the character table.

