- 1. (a) Let G be a group. Define the notions of $\mathbb{C}G$ -module, $\mathbb{C}G$ -submodule. State (without proof) Maschke's theorem. - (b) Give a counterexample (with an explanation) to the statement of Maschke's theorem in the case of an infinite group. - (c) Let $G = C_2 \times C_2$ be a direct product of two cyclic groups of order two, let a and b be the generators of these cyclic groups. - (i) Write down (without proof) a complete set of non-isomorphic irreducible $\mathbb{C}G$ modules V_1, \ldots, V_k . - (ii) Consider a 4-dimensional representation ρ of G given by $$\rho(a) = \begin{pmatrix} 5 & -4 & 0 & 0 \\ 6 & -5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \rho(b) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$ Decompose the corresponding $\mathbb{C}G$ -module into a direct sum of irreducible $\mathbb{C}G$ -submodules U_1,\ldots,U_l , and justify your answer. For each submodule U_i find an irreducible V_j from Part (i) which is $\mathbb{C}G$ -isomorphic to it, with justification. - 2. Let G be a finite group, let U and V be $\mathbb{C}G$ -modules. - (i) Define the notion of $\mathbb{C}G$ -homomorphism from U to V, define the vector space structure on the set $\mathrm{Hom}_{\mathbb{C}G}(U,V)$ of all $\mathbb{C}G$ -homomorphisms from U to V. - (ii) Prove the version of Schur's lemma which states that any $\mathbb{C}G$ -homomorphism from an irreducible $\mathbb{C}G$ -module to itself is a multiplication by a constant. - (iii) Let U be an irreducible $\mathbb{C}G$ -module, let $V=U_1\oplus U_2$ where the $\mathbb{C}G$ -submodules U_1,U_2 are both $\mathbb{C}G$ -isomorphic to U. Determine a basis of the space $\mathrm{Hom}_{\mathbb{C}G}(U,V)$ and find the dimension of this space. Present arguments to justify your answers. - 3. Let G be a finite group. - (a) (i) Define the regular $\mathbb{C}G$ -module, and write down the values of its character χ_{reg} . Justify your answer. - (ii) Let V_1, \ldots, V_k be $\mathbb{C}G$ -submodules of $\mathbb{C}G$ which form a complete set of non-isomorphic irreducible $\mathbb{C}G$ -modules, let f_1, \ldots, f_k be the corresponding primitive central idempotents. Prove the formula $$f_i = \frac{\chi_i(e)}{|G|} \sum_{g \in G} \chi_i(g^{-1})g,$$ where χ_i is the character of the module V_i , $i=1,\ldots,k$. You can use without a proof the property that for all $i,j\leq k$, $$ho_i(f_j) = egin{cases} I_{\chi_i(e)}, & ext{if } i = j \ 0, & ext{if } i eq j \end{cases},$$ where $I_{\chi_i(e)}$ stands for the identity matrix of size $\chi_i(e)$, and ρ_i is the linear extension to $\mathbb{C}G$ of a representation corresponding to the module V_i . You can also use without a proof that $\chi_{reg} = \sum_{i=1}^k \chi_i(e) \chi_i$. (b) Assume now that k=2 and consider a basis h_1,h_2 of the centre $Z(\mathbb{C}G)$ such that $$h_1^2 = h_1, \ h_2^2 = h_2, \ h_1 h_2 = 0.$$ Prove that the set $\{h_1,h_2\}$ is equal to the set $\{f_1,f_2\}$. (You may assume that the primitive central idempotents form a basis of $Z(\mathbb{C}G)$ which satisfies $f_1^2=f_1,f_2^2=f_2,f_1f_2=0$.) 4. (a) Define the inner product $\langle \cdot, \cdot \rangle$ on the characters of a finite group G and state (without a proof) a result giving the possible values of $\langle \varphi, \psi \rangle$ for irreducible characters φ, ψ . Deduce that if a character Φ has a decomposition $$\Phi = \sum_{i=1}^{k} \lambda_i \chi_i$$ where χ_1, \ldots, χ_k are different irreducible characters then $\lambda_i = \langle \Phi, \chi_i \rangle$. (b) The symmetric group \mathcal{S}_4 has the following character table: | Conjugacy class: | e | (12) | (123) | (12)(34) | (1234) | |--------------------|----|------|-------|----------|--------| | Centralizer order: | 24 | 4 | 3 | 8 | 4 | | χ_1 | 1 | 1 | 1 | 1 | 1 | | χ_2 | 1 | -1 | 1 | 1 | -1 | | χ_3 | 3 | 1 | 0 | -1 | -1 | | χ_4 | 3 | -1 | 0 | -1 | 1 | | χ_5 | 2 | 0 | -1 | 2 | 0 | (i) Express the character Φ given by the following values $$\Phi(e) = 10, \Phi((12)) = 0, \Phi((123)) = 1, \Phi((12)(34)) = -2, \Phi((1234)) = 2$$ as a linear combination of the irreducible characters. - (ii) Express the tensor square character $\chi=\chi_4^2$, as well as the antisymmetric part χ_a of the character χ and the symmetric part χ_s of χ , as linear combinations of the irreducible characters. - 5. (a) Let G be a finite group, g an element of G of order m, and χ a character of G of degree n. Prove that $\chi(g)$ is a sum of n m^{th} roots of unity (you can use without a proof the result on dimensions of irreducible modules of an abelian group). - (b) A group G of order 12 is known to have an irreducible character which is non-zero only on two conjugacy classes where it equals 3 and -1. Making it clear which properties of the characters you use, - (i) Determine the number of conjugacy classes of G and the degrees of the irreducible characters. - (ii) Fill in any two rows and any two columns of the character table of G. - (iii) Complete the character table.