1. Show that the equation:

$$
x^{5}-9 x+3=0
$$

cannot be solved in radicals over \mathbb{Q}.
(You may use any theorem you heard during the lectures.)
2. Let $\alpha \in \mathbb{C}$ be a root of the polynomial $p(x)=x^{3}+x^{2}-2 x-1 \in \mathbb{Q}[x]$ and let $K=\mathbb{Q}(\alpha)$.
(i) Show that $\left(\alpha^{2}-2\right)^{2}-2=-\alpha^{2}-\alpha+1$.
(ii) Prove that $\alpha^{2}-2$ is also a root of $p(x)$.
(iii) Show that $-\alpha^{2}-\alpha+1$ is also a root of $p(x)$.
(iv) Show that $[K: \mathbb{Q}]=3$.
(v) Prove that $K \mid \mathbb{Q}$ is a Galois extension.
(vi) Determine the Galois group of the extension $K \mid \mathbb{Q}$.
3. Let $p(x) \in K[x]$ be a polynomial of degree n. Show that $[L: K]$ divides n ! where $L \mid K$ is the splitting field of $p(x)$.
4. Prove that for every finite simple extension $L \mid K$ there are only finitely many subfields $F \subseteq L$ containing K.
5. Prove that there is a field K of characteristic zero which has two subfields $K_{1}<K$ and $K_{2}<K$ such that the extensions $K \mid K_{1}$ and $K \mid K_{2}$ are finite but the extension $K \mid K_{1} \cap K_{2}$ is not finite.
(You may use any theorem proved in the course.)

