UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3P11/M4P11

Galois Theory

Date: Wednesday 31st May 2006

Time: 2 pm - 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

Notation: L: K denotes an extension of fields with $K \subseteq L$. In particular K(Y) denotes a field K with a set Y adjoined. The Galois group of L: K is written $\Gamma(L: K)$. * and \dagger will denote the maps of the Galois correspondence.

- 1. (a) Let L: K be an extension of fields. Define the terms
 - (i) L: K is simple.
 - (ii) L: K is algebraic.
 - (iii) L: K is normal.
 - (iv) L: K is separable.
 - (b) Let $X = \{n \sqrt{5} \mid n \in \mathbb{N}\}$ and set $F = \mathbb{Q}(X)$. Is the extension $F : \mathbb{Q}$
 - (i) algebraic ?
 - (ii) simple?
 - (iii) normal?

Justify your answers.

- 2. (a) (i) Define the Galois group $\Gamma(L : K)$ of an extension of fields L : K. For each intermediate field M with $K \subseteq M \subset L$, define $M^* \subseteq \Gamma(L : K)$. For each subgroup $H \subseteq \Gamma(L : K)$, define H^{\dagger} .
 - (ii) Let $f(t) = t^3 3 \in \mathbb{Q}[t]$. Identify the splitting field Σ for f over \mathbb{Q} . Find a presentation for the Galois group $\Gamma(\Sigma : \mathbb{Q})$.
 - (b) Draw a diagram illustrating the Galois correspondence for $\Sigma : \mathbb{Q}$. Identify each subgroup and subfield in your diagram.
- 3. (a) (i) Define a radical extension $R : \mathbb{Q}$, and explain what it means for a polynomial in $\mathbb{Q}[t]$ to be soluble by radicals.
 - (ii) Give a brief account of the proof that the Galois group $\Gamma(R : \mathbb{Q})$ is soluble when $R : \mathbb{Q}$ is a normal and radical extension.
 - (b) Let Σ be a splitting field for the polynomial $f(t) = t^5 9t + 3$ over \mathbb{Q} . Show that the Galois group $\Gamma(\Sigma : \mathbb{Q})$ is isomorphic to S_5 . Deduce that f(t) is not soluble by radicals.

- 4. (a) Let Σ be a splitting field for a cubic polynomial over \mathbb{Q} such that $\Gamma(\Sigma : \mathbb{Q})$ is isomorphic to the cyclic group of order three. Prove that the extension $\Sigma : \mathbb{Q}$ is not radical.
 - (b) The field $\mathbb{Q}(\cos \pi/9)$ is the splitting field for a cubic polynomial over \mathbb{Q} . Find a field R with $\mathbb{Q}(\cos \pi/9) \subset R$ such that the extension $R : \mathbb{Q}$ is radical. Find the Galois group $\Gamma(R : \mathbb{Q})$ of your example.

- 5. (a) (i) State the theorem of primitive element.
 - (ii) Let p and q be distinct primes. Show that the extension $\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}$ is simple.
 - (b) Let s be transcendental over \mathbb{Z}_2 and t transcendental over $\mathbb{Z}_2(s)$. Consider the extension $L: K = \mathbb{Z}_2(t, s) : \mathbb{Z}_2(t^2, s^2)$.
 - (i) Find the degree [L:K].
 - (ii) Let $a \in L$. Show that $a^2 \in K$.
 - (iii) Show that L: K is not simple. Explain why this does not contradict the theorem of primitive element.