UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)
 May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3P11/M4P11

Galois Theory

Date: Wednesday 31st May 2006
Time: $2 \mathrm{pm}-4 \mathrm{pm}$

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

Notation: $L: K$ denotes an extension of fields with $K \subseteq L$. In particular $K(Y)$ denotes a field K with a set Y adjoined. The Galois group of $L: K$ is written $\Gamma(L: K)$. * and \dagger will denote the maps of the Galois correspondence.

1. (a) Let $L: K$ be an extension of fields. Define the terms
(i) $L: K$ is simple.
(ii) $L: K$ is algebraic.
(iii) $L: K$ is normal.
(iv) $L: K$ is separable.
(b) Let $X=\left\{{ }^{n} \sqrt{ } 5 \mid n \in \mathbb{N}\right\}$ and set $F=\mathbb{Q}(X)$. Is the extension $F: \mathbb{Q}$
(i) algebraic?
(ii) simple?
(iii) normal?

Justify your answers.
2. (a) (i) Define the Galois group $\Gamma(L: K)$ of an extension of fields $L: K$. For each intermediate field M with $K \subseteq M \subset L$, define $M^{*} \subseteq \Gamma(L: K)$. For each subgroup $H \subseteq \Gamma(L: K)$, define H^{\dagger}.
(ii) Let $f(t)=t^{3}-3 \in \mathbb{Q}[t]$. Identify the splitting field Σ for f over \mathbb{Q}. Find a presentation for the Galois group $\Gamma(\Sigma: \mathbb{Q})$.
(b) Draw a diagram illustrating the Galois correspondence for $\Sigma: \mathbb{Q}$. Identify each subgroup and subfield in your diagram.
3. (a) (i) Define a radical extension $R: \mathbb{Q}$, and explain what it means for a polynomial in $\mathbb{Q}[t]$ to be soluble by radicals.
(ii) Give a brief account of the proof that the Galois group $\Gamma(R: \mathbb{Q})$ is soluble when $R: \mathbb{Q}$ is a normal and radical extension.
(b) Let Σ be a splitting field for the polynomial $f(t)=t^{5}-9 t+3$ over \mathbb{Q}. Show that the Galois group $\Gamma(\Sigma: \mathbb{Q})$ is isomorphic to S_{5}. Deduce that $f(t)$ is not soluble by radicals.
4. (a) Let Σ be a splitting field for a cubic polynomial over \mathbb{Q} such that $\Gamma(\Sigma: \mathbb{Q})$ is isomorphic to the cyclic group of order three. Prove that the extension $\Sigma: \mathbb{Q}$ is not radical.
(b) The field $\mathbb{Q}(\cos \pi / 9)$ is the splitting field for a cubic polynomial over \mathbb{Q}. Find a field R with $\mathbb{Q}(\cos \pi / 9) \subset R$ such that the extension $R: \mathbb{Q}$ is radical. Find the Galois group $\Gamma(R: \mathbb{Q})$ of your example.
5. (a) (i) State the theorem of primitive element.
(ii) Let p and q be distinct primes. Show that the extension $\mathbb{Q}(\sqrt{ } p, \sqrt{ } q): \mathbb{Q}$ is simple.
(b) Let s be transcendental over \mathbb{Z}_{2} and t transcendental over $\mathbb{Z}_{2}(s)$. Consider the extension $L: K=\mathbb{Z}_{2}(t, s): \mathbb{Z}_{2}\left(t^{2}, s^{2}\right)$.
(i) Find the degree $[L: K]$.
(ii) Let $a \in L$. Show that $a^{2} \in K$.
(iii) Show that $L: K$ is not simple. Explain why this does not contradict the theorem of primitive element.

