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Note. In this paper, all fields are taken to be subfields of the complex numbers C.

You may quote results from group theory without proof.

1. Let E/F be an extension of fields. Define the terms

(i) E/F is simple;

(ii) a primitive element of E/F ;

(iii) E/F is normal.

Let a =
√
3 +
√
11. Find the minimal polynomial f(X) of a over Q, and determine b so

that the 4 roots of f(X) are ±a,±b.

Show that Q(a)/Q is not a normal extension. Hint: you do not need to attempt to write
b as a ‘general’ element of Q(a).

Find the splitting field E of f(X) over Q and the degree |E : Q|.

Show that a+ b is not a primitive element of E/Q.

Show also that the fields Q(a), Q(b) and Q(a+ b) are all different.

2. Define the Galois group G = Gal(E/F ) of a normal extension E/F of fields.

Given an intermediate field K, define the subgroup K∗ of G.

Given a subgroup H of G, define the intermediate field H†.

State the relationship between K and K∗†, and between H†∗ and H.

In the remainder of this question, you may quote without proof any results on

cyclotomic polynomials that you wish to use.

Let ω be a primitive 7-th root of unity, and let E = Q(ω). Show that Gal(E/Q) is cyclic
of order 6. Find subfields L,M of E with

(a) |Gal(L/Q)| = 2,

(b) |Gal(M/Q)| = 3,

in each case giving a primitive element.
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3. Let F be a field and let f(X) be an irreducible polynomial of degree n over F . Show that

the roots α1, . . . , αn of f(X) are distinct. (You may assume results concerning greatest

common divisors of polynomials.)

Let E be the splitting field of f(X) over F , and let α, β be any two roots of f(X). Show

that there is an element φ ∈ Gal(E/F ) with φ(α) = β.

Put Δ =
∏
i<j(αi − αj). Show that Gal(f(X)) ⊆ An if and only if Δ ∈ F .

4. Explain what is meant by ‘the polynomial f(X) is soluble by radicals’.

Let p be a prime number, and let f(X) = X5 − 5p2X + p, a polynomial over Q. Show
that f(X) is not soluble by radicals.

Let n ≥ 5. Give an example of an irreducible polynomial over Q of degree n that can be
solved by radicals.

5. Let p be a prime number, and suppose that the field K contains a primitive p-th root of

unity. Let L/K be a normal extension of degree p. Show that L = K(α) where α is a

root of a polynomial Xp − a, a ∈ K.

c© 2004 University of London M3/4P11 Page 3 of 3


