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1. Let G be a finite group and let g ∈ G. What is meant by the conjugacy class Cl(g) of g?
What is meant by the centralizer CG(g) of g in G?

State the relationship between |Cl(g)| and |CG(g)| .

Suppose that H is a subgroup of G with |G : H| = 2. Prove that if h ∈ H then either
CG(h) = CH(h) or |CG(h)| = 2 |CH(h)| .

Prove that every conjugacy class of the symmetric group Sn consists of all elements of a given

cycle type.

Find the centralizers in S5 of the elements (12345) and (12)(34). Find the centralizers in A5
of the same elements.

2. State what is meant by a simple group. What is meant by a composition series of a group?

Prove that every finite group has a composition series, and give an example (with justification)

of an infinite group which has no composition series.

Let p, q and r be prime numbers. How many composition series has Cp × Cq × Cr in the
following cases?

(a) p, q and r are distinct;

(b) p = q = r.

Justify your answers.

State and prove the Jordan-Hölder Theorem for finite groups.

3. State Sylow’s Theorems. Prove that every finite group G has a Sylow p-subgroup.

(a) Prove that if H is a normal subgroup of G with |G : H| coprime to p, then H contains
every Sylow p-subgroup of G.

(b) Prove that if H is a normal subgroup of G with |H| = pm for some integer m, then H
is contained in every Sylow p-subgroup of G.
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4. Prove that if H is a subgroup of a group G and |G : H| = n, then there exists a normal
subgroup K of G such that |G : K| divides n! Prove also that K is a subgroup of gHg−1

for all g ∈ G.

Prove that there are no simple groups of the following orders: 72, 105, 1000.

You may use Sylow’s Theorems, but any other result to which you appeal should be proved.

Which results, stated without proof in the course, would be helpful in showing that there are

no simple groups of order 72, 105 or 1000?

5. Let G be a finite group and p be a prime number. Define the centre Z(G) of G.

(a) Prove that if G/Z(G) is cyclic then G is abelian.

(b) Prove that if G is a non-trivial p-group then Z(G) is not trivial.

Now let G be a non-abelian group with |G| = p4.

(c) Prove that |Z(G)| = p or p2.

(d) Prove that if |Z(G)| = p then G contains a conjugacy class of order p.

(e) Prove that if |Z(G)| = p2 then G contains an abelian subgroup of order p3.

M3P10/M4P10 Group Theory (2006) Page 3 of 3


