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1. Let Ω be a bounded region in R2 with boundary ∂Ω ≡ ∂1Ω ∪ ∂2Ω, either subset
being possibly empty. Given σ ∈ C1(Ω) with σ(x, y) ≥ σ0 > 0 for all (x, y) ∈ Ω,
c, α, g1, g2 ∈ R, with c, α ≥ 0, and f ∈ L2(Ω); consider the following problem:

(P1) Find u such that

−∇ . (σ∇u) + c u = f in Ω, u = g1 on ∂1Ω, σ
∂u

∂n
+ αu = g2 on ∂2Ω;

where
∂u

∂n
≡ ∇u . n and n is the outward unit normal to ∂Ω.

For any g ∈ R, let V (g) := {v ∈ H1(Ω) : v = g on ∂1Ω}. Show that a solution of (P1) is
a solution of the following problem:

(P2) Find u ∈ V (g1) such that

a(u, v) =

∫

Ω

f v dx dy + g2

∫

∂2Ω

v ds ∀ v ∈ V (0) ;

where

a(w, v) :=

∫

Ω

[ σ∇w .∇v + cw v ] dx dy + α
∫

∂2Ω

w v ds ∀ w, v ∈ H1(Ω).

Show that problem (P2) is equivalent to the following problem:

(P3) Find u ∈ V (g1) such that

J(u) ≤ J(w) := a(w,w) − 2
∫

Ω

f w dx dy − 2 g2

∫

∂2Ω

w ds ∀ w ∈ V (g1).

State, without proof, conditions on the data c, α, g1, g2, f and ∂1Ω to guarantee the

existence and uniqueness of a solution to (P2).

Give an example of a choice of data for which

(i) There exists a non-unique solution to (P2).

(ii) There does not exist a solution to (P2).
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2. Let Ω ≡ (a, b) be a bounded interval. For all f ∈ L2(Ω) and g ∈ R, assume there exists a
solution w ∈ H2(Ω), dependent on f and g, to the problem

−w′′ + w = f in Ω, w(a) = 0, w′(b) + w(b) = g.

By considering its weak formulation show that for any given f and g, the solution w is

unique and that

‖w‖1,Ω ≤ ‖f‖0,Ω + |g| ,

where for any m ∈ N

‖v‖m,Ω :=

{
m∑

i=0

∫ b

a

[v(i)]2 dx

} 1
2

is the norm on the Sobolev space Hm(Ω).

Hence deduce from the differential equation that for any r ∈ N, if f ∈ Hr(Ω) then there
exists a positive constant M , dependent only on r, such that

‖w‖r+2,Ω ≤M [ ‖f‖r,Ω + |g| ].

Let a = x0 < x1 ∙ ∙ ∙ < xj−1 < xj ∙ ∙ ∙ < xJ−1 < xJ = b, hj := xj − xj−1, j = 1→ J , and
h := maxj=1→J hj. For any positive integer k, let

V hk :=
{
vh ∈ C[a, b] : vh is a polynomial of degree k or less on [xj−1, xj], j = 1→ J

}
.

Formulate the finite element approximation whk ∈ V
h
k to the above problem. Show that for

any given f ∈ L2(Ω) and g ∈ R, whk exists and is unique.

Setting e := w − whk , show that there exists a positive constant C1 such that

‖e‖1,Ω ≤ C1 h
k [ ‖f‖k−1,Ω + |g| ].

By considering the weak formulation of the auxiliary problem: find z such that

−z′′ + z = e in Ω, z(a) = z′(b) + z(b) = 0;

show that there exists a positive constant C2 such that

‖e‖0,Ω ≤ C2 h
k+1 [ ‖f‖k−1,Ω + |g| ].

[
You may assume the approximation result that there exists a positive constant C,

independent of h, such that

‖v − vhk,I‖1,Ω ≤ C h
k ‖v‖k+1,Ω ∀ v ∈ Hk+1(Ω),

where vhk,I ∈ V
h
k is the interpolant of v, such that for j = 1→ J

vhk,I(xj− sk ) = v(xj−
s
k
), s = 0, 1, ∙ ∙ ∙ , k; where xj− s

k
:= (1− s

k
) xj +

s
k
xj−1 .

]
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3. Let ê be the tetrahedron in (x̂, ŷ, ẑ) space with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and

(0, 0, 1) labelled P̂1, P̂2, P̂3 and P̂4 respectively.

For i 6= j, let

P̂ij :=
1
2
[P̂i + P̂j].

Consider the following quadrature rules

Q̂aê(v̂) :=
1
24

[
v̂(P̂1) + v̂(P̂2) + v̂(P̂3) + v̂(P̂4)

]
,

Q̂bê(v̂) :=
1
36

[
v̂(P̂12) + v̂(P̂13) + v̂(P̂14) + v̂(P̂23) + v̂(P̂24) + v̂(P̂34)

]
,

approximating

∫

ê

v̂(x̂, ŷ, ẑ) dx̂ dŷ dẑ.

Let

Pk(x̂, ŷ, ẑ) := { all polynomials in x̂, ŷ and ẑ of degree ≤ k }.

Show that Q̂aê(v̂) and Q̂
b
ê(v̂) are exact for all v̂ ∈ P1(x̂, ŷ, ẑ), but not for all v̂ ∈ P2(x̂, ŷ, ẑ).[

You may use the result that

∫

ê

x̂i ŷj ẑk dx̂ dŷ dẑ =
i! j! k!

(i+ j + k + 3)!
∀ i, j, k ∈ N.

]

Find ω such that

ω Q̂aê(v̂) + (1− ω) Q̂
b
ê(v̂)

is exact for all v̂ ∈ P2(x̂, ŷ, ẑ).

Show that this quadrature rule is not exact for all v̂ ∈ P3(x̂, ŷ, ẑ).

Let e be the tetrahedron with vertices Pi, having coordinates (xi, yi, zi), i = 1→ 4. Derive
a quadrature rule approximating

∫

e

v(x, y, z) dx dy dz,

which is exact for all v ∈ P2(x, y, z). State precisely the sampling points in terms of the
coordinates (xi, yi, zi), i = 1→ 4, and the weights in terms of the volume of e.
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4. Let τ be a triangle with vertices P1, P2 and P3. For i = 1 → 3, let φi(x, y) be the linear
function such that

φi(Pj) = δi,j j = 1→ 3.

State, without proof, the entries

∫

τ

∇φi .∇φj dx dy i, j = 1→ 3

of the “element stiffness matrix” for τ in terms of the cotangents of its angles.

Consider the problem: Find u such that

∇2u = 6 in the triangle 0 < y < 1− x, 0 < x < 1;

subject to the boundary conditions

u(x, 1− x) = 3 x2 + 2 x+ 3,
∂u

∂y
(x, 0) = 0 for 0 ≤ x ≤ 1;

and
∂u

∂x
(0, y) = 4 for 0 ≤ y ≤ 1.

Formulate and compute the continuous piecewise linear approximation to the above problem

based on the triangulation given in the figure below, where the nodes 1 → 6 have (x, y)
coordinates (0, 0), (1

2
, 0), (0, 1

2
), (1, 0), (1

2
, 1
2
) and (0, 1) respectively.

x

y

(0,0) (1
2
, 0) (1, 0)

(0, 1
2
)

(0, 1)
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5. Let ê be the square in the (x̂, ŷ) plane with vertices (−1,−1), (1,−1), (−1, 1) and (1, 1)
labelled P̂1, P̂2, P̂3 and P̂4 respectively. In addition there are nodes P̂5, P̂6, P̂7 and P̂8
on ê with coordinates (0,−1), (−1, 0), (1, 0) and (0, 1) respectively. Let B be the set of
functions defined on ê such that

f ∈ B =⇒ f(x̂, ŷ) = a1 + a2 x̂+ a3 ŷ + a4 x̂
2 + a5 x̂ ŷ + a6 ŷ

2 + a7 x̂
2 ŷ + a8 x̂ ŷ

2

for some constants {ai}8i=1. Let {φ̂i}
8
i=1 be the basis functions such that

φ̂i ∈ B and φ̂i(P̂j) = δi,j i, j = 1→ 8.

Find φ̂1.

Let the points Pj have coordinates (xj, yj), j = 1→ 8, such that Pj ≡ P̂j for j = 2→ 8;
x1 < 0 and y1 < 0. Consider the mapping F : (x̂, ŷ) ∈ ê→ (x, y) given by

x =
8∑

i=1

xi φ̂i(x̂, ŷ) and y =
8∑

i=1

yi φ̂i(x̂, ŷ).

Sketch the image, e, of ê under the map F .

Show that for (x̂, ŷ) ∈ ê

9
16
≥
∂φ̂1

∂x̂
,
∂φ̂1

∂ŷ
≥ −3

2
;

and use this result to show that

2
3
> (X + Y ) > −16

9
, 1− 3

2
X + 9

16
Y > 0, 1 + 9

16
X − 3

2
Y > 0,

where X = x1 + 1 and Y = y1 + 1, are sufficient conditions for F to be invertible.

Assuming that the above conditions hold; find ∇φ1(1,−1), where

φ1(x, y) := φ̂1(F
−1(x, y)) ∀ (x, y) ∈ e.
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