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1. Given α, g ∈ R, σ ∈ C2[0, 1], b ∈ C1[0, 1] and c, f ∈ C[0, 1]; where

σ(x) ≥ σ0 > 0 and b(x), c(x), α ≥ 0 ∀ x ∈ [0, 1];

consider the following problem :

(P1) Find u such that

(σ u′′)′′ − (b u′)′ + c u = f in (0, 1)

u′′(0) = u′′(1) = [ (σ u′′)′ − b u′ ](1) = 0 and [ (σ u′′)′ − b u′ + αu ](0) = g.

Show that a solution of (P1) is a solution of

(P2) Find u ∈ H2(0, 1) such that

a(u, v) =

∫ 1

0

f v dx+ g v(0) ∀ v ∈ H2(0, 1) ;

where

a(w, v) :=

∫ 1

0

[ σw′′ v′′ + bw′ v′ + cw v ] dx+ αw(0) v(0) ∀ w, v ∈ H2(0, 1).

Show that a solution of (P2) is a solution of

(P3) Find u ∈ H2(0, 1) such that

a(u, u)− 2
∫ 1

0

f u dx− 2 g u(0) ≤ a(v, v)− 2
∫ 1

0

f v dx − 2 g v(0) ∀ v ∈ H2(0, 1).

State conditions on b, c and α in order to ensure that the solution of (P2), and hence (P1),

is unique.

Give an example of a choice of data σ, b, c, f, g and α for which

(i) The solution of (P1) is not unique.

(ii) There does not exist a solution to (P1).
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2. For (a, b) ⊂ R and `, m ∈ N, let

|w|`,(a,b) :=

[∫ b

a

(
d`w

dx`

)2
dx

] 1
2

, ‖w‖m,(a,b) :=

[
m∑

`=0

|w|2`,(a,b)

] 1
2

and Hm(a, b) := {w : ‖w‖m,(a,b) <∞}.

Let a = x0 < x1 ∙ ∙ ∙ < xj−1 < xj ∙ ∙ ∙ < xJ−1 < xJ = b, hj := xj − xj−1, j = 1→ J , and
h := maxj=1→J hj. For any positive integer k, let

V hk :=
{
vh ∈ C[a, b] : vh is a polynomial of degree k on (xj−1, xj), j = 1→ J

}
.

For any w ∈ C[a, b], let whk,I ∈ V
h
k be the interpolant of w, such that for j = 1→ J

whk,I(xj− rk ) = w(xj−
r
k
), r = 0, 1, ∙ ∙ ∙ , k; where xj− r

k
:= (1− r

k
) xj +

r
k
xj−1 .

Assuming that for all positive integers m, and distinct points {yi}mi=1, yi ∈ [0, 1], there
exists a positive constant C1(m), such that

‖w‖2m,(0,1) ≤ C1(m)

[

|w|2m,(0,1) +
m∑

i=1

[w(yi)]
2

]

∀ w ∈ Hm(0, 1);

show for ` = 0 and 1 that

|w − whk,I |
2
`,(xj−1,xj)

≤ C1(k + 1)h
2(k+1−`)
j |w|2k+1,(xj−1,xj), j = 1→ J.

For all f ∈ Hr(a, b), r ≥ 0, assume that there exists a unique solution u ∈ Hr+2(a, b),
dependent on f , to the problem

−
d2u

dx2
+ u = f in (a, b), u(a) = u(b) = 0 ;

and that there exists a positive constant C2(r) such that

‖u‖r+2,(a,b) ≤ C2(r) ‖f‖r,(a,b) .

Formulate the V hk finite element approximation, u
h
k , to the above problem.

Assuming that f ∈ Hk−1(a, b); show that there exists a positive constant C3 such that

‖u− uhk‖1,(a,b) ≤ C3 h
k ‖f‖k−1,(a,b) .

c© 2004 University of London M3N8/M4N8/MSA8 Page 3 of 6



3. Let τ be an equilateral triangle with vertices P1, P2 and P3. For i = 1 → 3, let φi(x, y)
be the linear function on τ such that

φi(Pj) = δij j = 1→ 3.

Show that

∫

τ

φi dx dy =
1
3
m(τ) and

∫

τ

∇φi .∇φj dx dy =

{
1√
3
if j = i

−1
2
√
3
if j 6= i

.

Let Ω be the regular hexagon centred on the origin with vertices A, B, C, D, E and F ;

see the figure below. Let ∂1Ω be that part of the boundary of Ω consisting of the sides AB,

BC, EF and FA; and ∂2Ω be the remaining sides CD and DE. Consider the problem :

Find u such that

−∇2u = 2 in Ω

u = 2 (y2 − x2) on ∂1Ω and
∂u

∂n
= 0 on ∂2Ω,

where
∂u

∂n
:= ∇u . n and n is the outward unit normal to ∂Ω.

Formulate and compute the continuous piecewise linear approximation to the above problem

based on the equilateral triangulation of Ω given in the figure below.

x

y

B (1, 0)

A (1
2
,
√
3
2
)

CD

E

F
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4. Show that the quadrature rules

Q̂aα(v̂) := v̂(−α, 0) + v̂(α, 0) + v̂(0,−α) + v̂(0, α)

and Q̂bβ(v̂) := v̂(−β,−β) + v̂(−β, β) + v̂(β,−β) + v̂(β, β)

approximating ∫

ê

v̂(x̂, ŷ) dx̂ dŷ , where ê := [−1, 1]× [−1, 1] ,

are exact for all bilinear v̂ for any α, β ∈ [0, 1].

Find the unique α? ∈ [0, 1] so that Q̂aα?(v̂) is exact for all cubic v̂, and show that Q̂
a
α?(v̂)

is not exact for all biquadratic v̂.

Find the unique β? ∈ [0, 1] so that Q̂bβ?(v̂) is exact for all bicubic v̂, and show that Q̂
b
β?(v̂)

is not exact for all quartic v̂.

Let e be the parallelogram with vertices (xi, yi), i = 1→ 4, such that x4 = x2 + x3 − x1
and y4 = y2 + y3 − y1. Show that the linear map (x, y)T = B (x̂, ŷ)T + b, where

B := 1
2

(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)

and b := 1
2

(
x2 + x3
y2 + y3

)

,

transforms (x̂, ŷ) ∈ ê to (x, y) ∈ e.

Use the quadrature rule Q̂bβ?(∙) over ê to develop the corresponding approximation to

∫

e

v(x, y) dx dy ,

stating precisely the sampling points and the weights in terms of B and b.

For what class of functions v is this approximation exact ? Give reasons for your answer.
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5. Let ê be the square in the (x̂, ŷ) plane with vertices (−1,−1), (1,−1), (−1, 1) and (1, 1)
labelled P̂1, P̂2, P̂3 and P̂4 respectively. In addition there are nodes P̂5, P̂6, P̂7, P̂8 and P̂9
on ê with coordinates (0,−1), (−1, 0), (0, 0), (1, 0) and (0, 1) respectively.

Find φ̂1(x̂, ŷ); where for i = 1 → 9, φ̂i(x̂, ŷ), (x̂, ŷ) ∈ ê, is the biquadratic function such
that

φ̂i(P̂j) = δij j = 1→ 9.

Let the points Pj have coordinates (xj, yj), j = 1→ 9, such that Pj ≡ P̂j for j 6= 1 and
x1, y1 < 0. Consider the mapping F : (x̂, ŷ) ∈ ê→ (x, y) given by

x =
9∑

i=1

xi φ̂i(x̂, ŷ) and y =
9∑

i=1

yi φ̂i(x̂, ŷ).

Sketch the image, e, of ê under the map F .

Show that for (x̂, ŷ) ∈ ê

0.5 ≥
∂φ̂1

∂x̂
,
∂φ̂1

∂ŷ
≥ −1.5 ,

and use this result to show that

−4 > 3 (x1 + y1) > −12 and y1 > 3 x1 > 9 y1

are sufficient conditions for F to be invertible.

Assuming that the above conditions hold; find ∇φ1(−1, 0), where

φi(x, y) := φ̂i(F
−1(x, y)) ∀ (x, y) ∈ e, i = 1→ 9.
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