UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

BSc	/MSci	EXAMINA	ATION	(MATHEM	(ATICS)	MAY	IUNE	2003
	TATOCI	T77 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	77 TO 1 1	\		TAT7 F 6	, , , ,	-000

This paper is also taken for the relevant examination for the Associateship

M3N8/M4N8/MSA8

FINITE ELEMENT METHOD

M3N8/M4N8/MSA8: Page 1 of 6

DATE: ? 2003 TIME: ?

Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Let $\Omega_1 \equiv (-1,0)$, $\Omega_2 \equiv (0,1)$ and $\Omega \equiv (-1,1)$. Given $f \in L^2(\Omega)$ and strictly positive constants σ_1 , σ_2 and c; consider the interface problem:

(P1) Find
$$u(x) := \begin{cases} u_1(x) & x \in \overline{\Omega}_1 \equiv [-1, 0] \\ u_2(x) & x \in \overline{\Omega}_2 \equiv [0, 1] \end{cases}$$
 such that
$$-\sigma_i u_i'' + c u_i = f \quad \text{in } \Omega_i, \quad i = 1 \to 2;$$

$$u_1(-1) = u_2(1) = 0, \quad u_1(0) = u_2(0) \quad \text{and} \quad \sigma_1 u_1'(0) = \sigma_2 u_2'(0).$$

Show that a solution of (P1) solves

(P2) Find
$$u \in H_0^1(\Omega) := \{ w \in H^1(\Omega) : w(-1) = w(1) = 0 \}$$
 such that
$$a(u,v) = \ell(v) \qquad \forall \ v \in H_0^1(\Omega);$$

where for all $v, w \in H_0^1(\Omega)$

$$\ell(v) := \int_{\Omega} f v \, dx, \qquad a(w, v) := \int_{\Omega} [\sigma \, w' \, v' + c \, w \, v] \, dx$$
and
$$\sigma(x) := \begin{cases} \sigma_1 & x \in \Omega_1 \\ \sigma_2 & x \in \Omega_2 \end{cases}.$$

Show that problem (P2) is equivalent to

(P3) Find $u \in H_0^1(\Omega)$ such that

$$a(u, u) - 2\ell(u) \le a(v, v) - 2\ell(v)$$
 $\forall v \in H_0^1(\Omega)$.

Show that the solution of (P2), and hence (P1), is unique.

2. If $w \in H^2(0,1)$ and w(0) = w(1) = 0, show that

$$\int_0^1 w^2 dx \le \frac{1}{8} \int_0^1 (w')^2 dx \quad \text{and} \quad \int_0^1 (w')^2 dx \le \frac{1}{2} \int_0^1 (w'')^2 dx.$$

Let

$$S^h := \Big\{ v^h \in C[a, b] : v^h \text{ linear on } [x_{j-1}, x_j], \ j = 1 \to J \Big\},$$

where $a = x_0 < x_1 \cdots < x_{j-1} < x_j \cdots < x_{J-1} < x_J = b$. For any $v \in H^2(a, b)$, let $v_I^h \in S^h$ be such that $v_I^h(x_j) = v(x_j)$, $j = 0 \to J$. Use the results above to show that for all $v \in H^2(a, b)$ and for $j = 1 \to J$ that

$$\int_{x_{j-1}}^{x_j} [(v - v_I^h)']^2 dx \le \frac{1}{2} h_j^2 \int_{x_{j-1}}^{x_j} (v'')^2 dx$$
and
$$\int_{x_{j-1}}^{x_j} (v - v_I^h)^2 dx \le \frac{1}{16} h_j^4 \int_{x_{j-1}}^{x_j} (v'')^2 dx;$$

where $h_j := x_j - x_{j-1}$.

For all $f \in L^2(a, b)$, assume there exists a solution $u \in H^2(a, b)$, dependent on f, to the problem

$$-u'' + u = f$$
 in (a, b) , $u'(a) = u'(b) = 0$.

By considering its weak formulation show that for any given f, the solution u is unique and that

$$\int_{a}^{b} [(u')^{2} + u^{2}] dx \le \int_{a}^{b} f^{2} dx.$$

Deduce from the differential equation and the above that

$$\int_a^b (u'')^2 \, \mathrm{d}x \le 4 \int_a^b f^2 \, \mathrm{d}x.$$

Formulate the finite element approximation $u^h \in S^h$ to the above problem. Show that for any given $f \in L^2(a,b)$, u^h exists and is unique.

Setting $e := u - u^h$, show that there exists a positive constant C such that

$$\int_{a}^{b} [(e')^{2} + e^{2}] dx \le C h^{2} \int_{a}^{b} f^{2} dx,$$

where $h := \max_{j=1 \to J} h_j$.

3. Let τ be a triangle with vertices P_1 , P_2 and P_3 . For $i=1\to 3$, let $\phi_i(x,y)$ be the linear function such that

$$\phi_i(P_j) = \delta_{i,j} \quad j = 1 \to 3.$$

State, without proof, the entries

$$\int_{\tau} \underline{\nabla} \phi_i \cdot \underline{\nabla} \phi_j \, dx \, dy \qquad i, j = 1 \to 3$$

of the "element stiffness matrix" for τ in terms of the cotangents of its angles.

Consider the problem: Find u such that

$$\nabla^2 u \ = \ 4 \qquad \text{in the triangle} \quad 0 < y < 1 - x, \quad 0 < x < 1;$$

subject to the boundary conditions

$$u(x, 1-x) = 2x^2,$$
 $\frac{\partial u}{\partial y}(x, 0) = -2$ for $0 \le x \le 1;$
and $\frac{\partial u}{\partial x}(0, y) = 0$ for $0 \le y \le 1.$

Formulate and compute the continuous piecewise linear approximation to the above problem based on the triangulation given in the figure below, where the nodes $1 \to 6$ have (x, y) coordinates (0, 0), $(\frac{1}{2}, 0)$, $(0, \frac{1}{2})$, (1, 0), $(\frac{1}{2}, \frac{1}{2})$ and (0, 1) respectively.

4. Let \widehat{e} be the tetrahedron in $(\widehat{x}, \widehat{y}, \widehat{z})$ space with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) labelled \widehat{P}_1 , \widehat{P}_2 , \widehat{P}_3 and \widehat{P}_4 respectively. Consider the quadrature rule

$$\widehat{Q}_{\widehat{e}}(\widehat{v}) := \frac{1}{24} \left[\widehat{v}(\beta, \beta, \beta) + \widehat{v}(\alpha, \beta, \beta) + \widehat{v}(\beta, \alpha, \beta) + \widehat{v}(\beta, \beta, \alpha) \right]$$

approximating

$$\int_{\widehat{z}} \widehat{v}(\widehat{x}, \widehat{y}, \widehat{z}) \, d\widehat{x} \, d\widehat{y} \, d\widehat{z}.$$

Find bounds on α and β so that the sampling points of $\widehat{Q}_{\widehat{e}}(\cdot)$ are in \widehat{e} . Find necessary and sufficient conditions for $\widehat{Q}_{\widehat{e}}(\widehat{v})$ to be exact

- (i) for all $\widehat{v} \in \mathcal{P}_1(\widehat{x}, \widehat{y}, \widehat{z})$,
- (ii) for all $\widehat{v} \in \mathcal{P}_2(\widehat{x}, \widehat{y}, \widehat{z})$;

where

$$\mathcal{P}_k(\widehat{x},\widehat{y},\widehat{z}) := \{ \text{ all polynomials in } \widehat{x},\widehat{y} \text{ and } \widehat{z} \text{ of degree } \leq k \}.$$

You may use the result that

$$\int_{\widehat{\varepsilon}} \widehat{x}^i \, \widehat{y}^j \, \widehat{z}^k \, \mathrm{d}\widehat{x} \, \mathrm{d}\widehat{y} \, \mathrm{d}\widehat{z} = \frac{i! \, j! \, k!}{(i+j+k+3)!} \quad \forall \, i, \, j, \, k \in \mathbb{N}. \, \Big]$$

Show that (ii) leads to a unique choice of α and β if the sampling points of $\widehat{Q}_{\widehat{e}}(\cdot)$ are required to be in \widehat{e} .

Find explicitly this choice.

Let e be the tetrahedron with vertices P_i , having coordinates (x_i, y_i, z_i) , $i = 1 \rightarrow 4$. Derive a quadrature rule approximating

$$\int_{e} v(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z,$$

which is exact for all $v \in \mathcal{P}_2(x, y, z)$. State precisely the sampling points in terms of the coordinates (x_i, y_i, z_i) , $i = 1 \to 4$, and the weights in terms of the volume of e.

5. Let \widehat{e} be the square in the $(\widehat{x},\widehat{y})$ plane with vertices (-1,-1), (1,-1), (-1,1) and (1,1) labelled $\widehat{P}_1, \widehat{P}_2, \widehat{P}_3$ and \widehat{P}_4 respectively. For $i=1 \to 4$, find the bilinear functions $\widehat{\phi}_i(\widehat{x},\widehat{y}), (\widehat{x},\widehat{y}) \in \widehat{e}$, such that

$$\widehat{\phi}_i(\widehat{P}_j) = \delta_{ij} \quad j = 1 \to 4.$$

Given points P_i with coordinates (x_i, y_i) , $i = 1 \to 4$, such that $x_1 = y_1 = y_2 = x_3 = 0$ and $x_2, x_4, y_3, y_4 > 0$; consider the mapping $F: (\widehat{x}, \widehat{y}) \in \widehat{e} \to (x, y)$ defined by

$$x = \sum_{i=1}^{4} x_i \widehat{\phi}_i(\widehat{x}, \widehat{y})$$
 and $y = \sum_{i=1}^{4} y_i \widehat{\phi}_i(\widehat{x}, \widehat{y}).$

Sketch the image, e, of \hat{e} under the map F.

Show that $F: \widehat{e} \to e$ is invertible if

$$x_2 y_4 + x_4 y_3 > x_2 y_3$$
.

Show that this condition is equivalent to the point P_4 being above the straight line joining P_2 to P_3 ; that is, e is a convex quadrilateral.

Find the area of e.

Assuming that F is invertible; find $\phi_i(\frac{1}{4}(x_2+x_4),\frac{1}{4}(y_3+y_4))$, where

$$\phi_i(x,y) := \widehat{\phi}_i(F^{-1}(x,y)) \quad \forall \ (x,y) \in e, \quad i = 1 \to 4.$$