UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

BSc/MSci EXAMINATION(MATHEMATICS) MAY-JUNE 2003

This paper is also taken for the relevant examination for the Associateship

M3N8/M4N8/MSA8

DATE : ? 2003

FINITE ELEMENT METHOD

TIME : ?

Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Let $\Omega_{1} \equiv(-1,0), \Omega_{2} \equiv(0,1)$ and $\Omega \equiv(-1,1)$. Given $f \in L^{2}(\Omega)$ and strictly positive constants σ_{1}, σ_{2} and c; consider the interface problem:
(P1) Find $u(x):=\left\{\begin{array}{ll}u_{1}(x) & x \in \bar{\Omega}_{1} \equiv[-1,0] \\ u_{2}(x) & x \in \bar{\Omega}_{2} \equiv[0,1]\end{array}\right.$ such that

$$
\begin{gathered}
-\sigma_{i} u_{i}^{\prime \prime}+c u_{i}=f \quad \text { in } \Omega_{i}, \quad i=1 \rightarrow 2 \\
u_{1}(-1)=u_{2}(1)=0, \quad u_{1}(0)=u_{2}(0) \quad \text { and } \quad \sigma_{1} u_{1}^{\prime}(0)=\sigma_{2} u_{2}^{\prime}(0) .
\end{gathered}
$$

Show that a solution of (P1) solves
(P2) Find $u \in H_{0}^{1}(\Omega):=\left\{w \in H^{1}(\Omega): w(-1)=w(1)=0\right\}$ such that

$$
a(u, v)=\ell(v) \quad \forall v \in H_{0}^{1}(\Omega) ;
$$

where for all $v, w \in H_{0}^{1}(\Omega)$

$$
\begin{aligned}
& \ell(v):=\int_{\Omega} f v \mathrm{~d} x, \quad a(w, v):=\int_{\Omega}\left[\sigma w^{\prime} v^{\prime}+c w v\right] \mathrm{d} x \\
& \text { and } \quad \sigma(x):=\left\{\begin{array}{ll}
\sigma_{1} & x \in \Omega_{1} \\
\sigma_{2} & x \in \Omega_{2}
\end{array} .\right.
\end{aligned}
$$

Show that problem (P2) is equivalent to
(P3) Find $u \in H_{0}^{1}(\Omega)$ such that

$$
a(u, u)-2 \ell(u) \leq a(v, v)-2 \ell(v) \quad \forall v \in H_{0}^{1}(\Omega)
$$

Show that the solution of (P2), and hence (P1), is unique.
2. If $w \in H^{2}(0,1)$ and $w(0)=w(1)=0$, show that

$$
\int_{0}^{1} w^{2} \mathrm{~d} x \leq \frac{1}{8} \int_{0}^{1}\left(w^{\prime}\right)^{2} \mathrm{~d} x \quad \text { and } \quad \int_{0}^{1}\left(w^{\prime}\right)^{2} \mathrm{~d} x \leq \frac{1}{2} \int_{0}^{1}\left(w^{\prime \prime}\right)^{2} \mathrm{~d} x
$$

Let

$$
S^{h}:=\left\{v^{h} \in C[a, b]: v^{h} \text { linear on }\left[x_{j-1}, x_{j}\right], j=1 \rightarrow J\right\}
$$

where $a=x_{0}<x_{1} \cdots<x_{j-1}<x_{j} \cdots<x_{J-1}<x_{J}=b$. For any $v \in H^{2}(a, b)$, let $v_{I}^{h} \in S^{h}$ be such that $v_{I}^{h}\left(x_{j}\right)=v\left(x_{j}\right), j=0 \rightarrow J$. Use the results above to show that for all $v \in H^{2}(a, b)$ and for $j=1 \rightarrow J$ that

$$
\begin{array}{ll}
& \int_{x_{j-1}}^{x_{j}}\left[\left(v-v_{I}^{h}\right)^{\prime}\right]^{2} \mathrm{~d} x \leq \frac{1}{2} h_{j}^{2} \int_{x_{j-1}}^{x_{j}}\left(v^{\prime \prime}\right)^{2} \mathrm{~d} x \\
\text { and } \quad & \int_{x_{j-1}}^{x_{j}}\left(v-v_{I}^{h}\right)^{2} \mathrm{~d} x \leq \frac{1}{16} h_{j}^{4} \int_{x_{j-1}}^{x_{j}}\left(v^{\prime \prime}\right)^{2} \mathrm{~d} x ;
\end{array}
$$

where $h_{j}:=x_{j}-x_{j-1}$.
For all $f \in L^{2}(a, b)$, assume there exists a solution $u \in H^{2}(a, b)$, dependent on f, to the problem

$$
-u^{\prime \prime}+u=f \quad \text { in }(a, b), \quad u^{\prime}(a)=u^{\prime}(b)=0 .
$$

By considering its weak formulation show that for any given f, the solution u is unique and that

$$
\int_{a}^{b}\left[\left(u^{\prime}\right)^{2}+u^{2}\right] \mathrm{d} x \leq \int_{a}^{b} f^{2} \mathrm{~d} x .
$$

Deduce from the differential equation and the above that

$$
\int_{a}^{b}\left(u^{\prime \prime}\right)^{2} \mathrm{~d} x \leq 4 \int_{a}^{b} f^{2} \mathrm{~d} x
$$

Formulate the finite element approximation $u^{h} \in S^{h}$ to the above problem. Show that for any given $f \in L^{2}(a, b), u^{h}$ exists and is unique.

Setting $e:=u-u^{h}$, show that there exists a positive constant C such that

$$
\int_{a}^{b}\left[\left(e^{\prime}\right)^{2}+e^{2}\right] \mathrm{d} x \leq C h^{2} \int_{a}^{b} f^{2} \mathrm{~d} x
$$

where $h:=\max _{j=1 \rightarrow J} h_{j}$.
3. Let τ be a triangle with vertices P_{1}, P_{2} and P_{3}. For $i=1 \rightarrow 3$, let $\phi_{i}(x, y)$ be the linear function such that

$$
\phi_{i}\left(P_{j}\right)=\delta_{i, j} \quad j=1 \rightarrow 3
$$

State, without proof, the entries

$$
\int_{\tau} \underline{\nabla} \phi_{i} \cdot \underline{\nabla} \phi_{j} \mathrm{~d} x \mathrm{~d} y \quad i, j=1 \rightarrow 3
$$

of the "element stiffness matrix" for τ in terms of the cotangents of its angles. Consider the problem: Find u such that

$$
\nabla^{2} u=4 \quad \text { in the triangle } \quad 0<y<1-x, \quad 0<x<1
$$

subject to the boundary conditions

$$
\begin{array}{lll}
u(x, 1-x)=2 x^{2}, & \frac{\partial u}{\partial y}(x, 0)=-2 & \text { for } \\
\text { and } & \frac{\partial u}{\partial x}(0, y)=0 & \text { for }
\end{array}
$$

Formulate and compute the continuous piecewise linear approximation to the above problem based on the triangulation given in the figure below, where the nodes $1 \rightarrow 6$ have (x, y) coordinates $(0,0),\left(\frac{1}{2}, 0\right),\left(0, \frac{1}{2}\right),(1,0),\left(\frac{1}{2}, \frac{1}{2}\right)$ and $(0,1)$ respectively.

4. Let \widehat{e} be the tetrahedron in $(\widehat{x}, \widehat{y}, \widehat{z})$ space with vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$ labelled $\widehat{P}_{1}, \widehat{P}_{2}, \widehat{P}_{3}$ and \widehat{P}_{4} respectively. Consider the quadrature rule

$$
\widehat{Q}_{\widehat{e}}(\widehat{v}):=\frac{1}{24}[\widehat{v}(\beta, \beta, \beta)+\widehat{v}(\alpha, \beta, \beta)+\widehat{v}(\beta, \alpha, \beta)+\widehat{v}(\beta, \beta, \alpha)]
$$

approximating

$$
\int_{\widehat{e}} \widehat{v}(\widehat{x}, \widehat{y}, \widehat{z}) \mathrm{d} \widehat{x} \mathrm{~d} \widehat{y} \mathrm{~d} \widehat{z}
$$

Find bounds on α and β so that the sampling points of $\widehat{Q}_{\widehat{e}}(\cdot)$ are in \widehat{e}.
Find necessary and sufficient conditions for $\widehat{Q}_{\widehat{e}}(\widehat{v})$ to be exact
(i) for all $\widehat{v} \in \mathcal{P}_{1}(\widehat{x}, \widehat{y}, \widehat{z})$,
(ii) for all $\widehat{v} \in \mathcal{P}_{2}(\widehat{x}, \widehat{y}, \widehat{z})$;
where

$$
\mathcal{P}_{k}(\widehat{x}, \widehat{y}, \widehat{z}):=\{\text { all polynomials in } \widehat{x}, \widehat{y} \text { and } \widehat{z} \text { of degree } \leq k\} .
$$

[You may use the result that

$$
\left.\int_{\widehat{e}} \widehat{x}^{i} \widehat{y}^{j} \widehat{z}^{k} \mathrm{~d} \widehat{x} \mathrm{~d} \widehat{y} \mathrm{~d} \widehat{z}=\frac{i!j!k!}{(i+j+k+3)!} \quad \forall i, j, k \in \mathbb{N} .\right]
$$

Show that (ii) leads to a unique choice of α and β if the sampling points of $\widehat{Q}_{\widehat{e}}(\cdot)$ are required to be in \widehat{e}.

Find explicitly this choice.
Let e be the tetrahedron with vertices P_{i}, having coordinates $\left(x_{i}, y_{i}, z_{i}\right), i=$ $1 \rightarrow 4$. Derive a quadrature rule approximating

$$
\int_{e} v(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

which is exact for all $v \in \mathcal{P}_{2}(x, y, z)$. State precisely the sampling points in terms of the coordinates $\left(x_{i}, y_{i}, z_{i}\right), i=1 \rightarrow 4$, and the weights in terms of the volume of e.
5. Let \hat{e} be the square in the $(\widehat{x}, \widehat{y})$ plane with vertices $(-1,-1),(1,-1),(-1,1)$ and (1,1) labelled $\widehat{P}_{1}, \widehat{P}_{2}, \widehat{P}_{3}$ and \widehat{P}_{4} respectively. For $i=1 \rightarrow 4$, find the bilinear functions $\widehat{\phi}_{i}(\widehat{x}, \widehat{y}),(\widehat{x}, \widehat{y}) \in \widehat{e}$, such that

$$
\widehat{\phi}_{i}\left(\widehat{P}_{j}\right)=\delta_{i j} \quad j=1 \rightarrow 4
$$

Given points P_{i} with coordinates $\left(x_{i}, y_{i}\right), i=1 \rightarrow 4$, such that $x_{1}=y_{1}=y_{2}=$ $x_{3}=0$ and $x_{2}, x_{4}, y_{3}, y_{4}>0$; consider the mapping $F:(\widehat{x}, \widehat{y}) \in \widehat{e} \rightarrow(x, y)$ defined by

$$
x=\sum_{i=1}^{4} x_{i} \widehat{\phi}_{i}(\widehat{x}, \widehat{y}) \quad \text { and } \quad y=\sum_{i=1}^{4} y_{i} \widehat{\phi}_{i}(\widehat{x}, \widehat{y})
$$

Sketch the image, e, of \widehat{e} under the map F.
Show that $F: \widehat{e} \rightarrow e$ is invertible if

$$
x_{2} y_{4}+x_{4} y_{3}>x_{2} y_{3} .
$$

Show that this condition is equivalent to the point P_{4} being above the straight line joining P_{2} to P_{3}; that is, e is a convex quadrilateral.

Find the area of e.
Assuming that F is invertible; find $\phi_{i}\left(\frac{1}{4}\left(x_{2}+x_{4}\right), \frac{1}{4}\left(y_{3}+y_{4}\right)\right)$, where

$$
\phi_{i}(x, y):=\widehat{\phi}_{i}\left(F^{-1}(x, y)\right) \quad \forall(x, y) \in e, \quad i=1 \rightarrow 4
$$

