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1. Let Ω1 ≡ (−1, 0), Ω2 ≡ (0, 1) and Ω ≡ (−1, 1). Given f ∈ L2(Ω) and strictly
positive constants σ1, σ2 and c; consider the interface problem:

(P1) Find u(x) :=

{
u1(x) x ∈ Ω1 ≡ [−1, 0]

u2(x) x ∈ Ω2 ≡ [0, 1]
such that

−σi u′′i + c ui = f in Ωi, i = 1→ 2;

u1(−1) = u2(1) = 0, u1(0) = u2(0) and σ1 u
′
1(0) = σ2 u

′
2(0).

Show that a solution of (P1) solves

(P2) Find u ∈ H10 (Ω) := {w ∈ H
1(Ω) : w(−1) = w(1) = 0 } such that

a(u, v) = `(v) ∀ v ∈ H10 (Ω);

where for all v, w ∈ H10 (Ω)

`(v) :=

∫

Ω

f v dx, a(w, v) :=

∫

Ω

[ σ w′ v′ + cw v ] dx

and σ(x) :=

{
σ1 x ∈ Ω1

σ2 x ∈ Ω2
.

Show that problem (P2) is equivalent to

(P3) Find u ∈ H10 (Ω) such that

a(u, u)− 2 `(u) ≤ a(v, v)− 2 `(v) ∀ v ∈ H10 (Ω).

Show that the solution of (P2), and hence (P1), is unique.
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2. If w ∈ H2(0, 1) and w(0) = w(1) = 0, show that

∫ 1

0

w2 dx ≤ 1
8

∫ 1

0

(w′)2 dx and

∫ 1

0

(w′)2 dx ≤ 1
2

∫ 1

0

(w′′)2 dx.

Let

Sh :=
{
vh ∈ C[a, b] : vh linear on [xj−1, xj], j = 1→ J

}
,

where a = x0 < x1 ∙ ∙ ∙ < xj−1 < xj ∙ ∙ ∙ < xJ−1 < xJ = b. For any v ∈ H2(a, b),
let vhI ∈ S

h be such that vhI (xj) = v(xj), j = 0→ J . Use the results above to
show that for all v ∈ H2(a, b) and for j = 1→ J that

∫ xj

xj−1

[(v − vhI )
′]2 dx ≤ 1

2
h2j

∫ xj

xj−1

(v′′)2 dx

and

∫ xj

xj−1

(v − vhI )
2 dx ≤ 1

16
h4j

∫ xj

xj−1

(v′′)2 dx;

where hj := xj − xj−1.

For all f ∈ L2(a, b), assume there exists a solution u ∈ H2(a, b), dependent on
f , to the problem

−u′′ + u = f in (a, b), u′(a) = u′(b) = 0.

By considering its weak formulation show that for any given f , the solution u
is unique and that ∫ b

a

[ (u′)2 + u2 ] dx ≤
∫ b

a

f 2 dx.

Deduce from the differential equation and the above that

∫ b

a

(u′′)2 dx ≤ 4
∫ b

a

f 2 dx.

Formulate the finite element approximation uh ∈ Sh to the above problem.
Show that for any given f ∈ L2(a, b), uh exists and is unique.

Setting e := u− uh, show that there exists a positive constant C such that

∫ b

a

[ (e′)2 + e2 ] dx ≤ C h2
∫ b

a

f 2 dx,

where h := maxj=1→J hj.
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3. Let τ be a triangle with vertices P1, P2 and P3. For i = 1→ 3, let φi(x, y) be
the linear function such that

φi(Pj) = δi,j j = 1→ 3.

State, without proof, the entries

∫

τ

∇φi .∇φj dx dy i, j = 1→ 3

of the “element stiffness matrix” for τ in terms of the cotangents of its angles.

Consider the problem: Find u such that

∇2u = 4 in the triangle 0 < y < 1− x, 0 < x < 1;

subject to the boundary conditions

u(x, 1− x) = 2 x2,
∂u

∂y
(x, 0) = −2 for 0 ≤ x ≤ 1;

and
∂u

∂x
(0, y) = 0 for 0 ≤ y ≤ 1.

Formulate and compute the continuous piecewise linear approximation to the
above problem based on the triangulation given in the figure below, where the
nodes 1→ 6 have (x, y) coordinates (0, 0), (1

2
, 0), (0, 1

2
), (1, 0), (1

2
, 1
2
) and (0, 1)

respectively.

x

y

(0,0) (1
2
, 0) (1, 0)

(0, 1
2
)

(0, 1)
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4. Let ê be the tetrahedron in (x̂, ŷ, ẑ) space with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0)

and (0, 0, 1) labelled P̂1, P̂2, P̂3 and P̂4 respectively. Consider the quadrature
rule

Q̂ê(v̂) :=
1
24
[ v̂(β, β, β) + v̂(α, β, β) + v̂(β, α, β) + v̂(β, β, α) ]

approximating

∫

ê

v̂(x̂, ŷ, ẑ) dx̂ dŷ dẑ.

Find bounds on α and β so that the sampling points of Q̂ê(∙) are in ê.

Find necessary and sufficient conditions for Q̂ê(v̂) to be exact

(i) for all v̂ ∈ P1(x̂, ŷ, ẑ) ,

(ii) for all v̂ ∈ P2(x̂, ŷ, ẑ) ;

where

Pk(x̂, ŷ, ẑ) := { all polynomials in x̂, ŷ and ẑ of degree ≤ k }.

[
You may use the result that

∫

ê

x̂i ŷj ẑk dx̂ dŷ dẑ =
i! j! k!

(i+ j + k + 3)!
∀ i, j, k ∈ N.

]

Show that (ii) leads to a unique choice of α and β if the sampling points of

Q̂ê(∙) are required to be in ê.

Find explicitly this choice.

Let e be the tetrahedron with vertices Pi, having coordinates (xi, yi, zi), i =
1→ 4. Derive a quadrature rule approximating

∫

e

v(x, y, z) dx dy dz,

which is exact for all v ∈ P2(x, y, z). State precisely the sampling points in
terms of the coordinates (xi, yi, zi), i = 1→ 4, and the weights in terms of the
volume of e.
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5. Let ê be the square in the (x̂, ŷ) plane with vertices (−1,−1), (1,−1), (−1, 1)
and (1, 1) labelled P̂1, P̂2, P̂3 and P̂4 respectively. For i = 1 → 4, find the
bilinear functions φ̂i(x̂, ŷ), (x̂, ŷ) ∈ ê, such that

φ̂i(P̂j) = δij j = 1→ 4.

Given points Pi with coordinates (xi, yi), i = 1→ 4, such that x1 = y1 = y2 =
x3 = 0 and x2, x4, y3, y4 > 0; consider the mapping F : (x̂, ŷ) ∈ ê → (x, y)
defined by

x =
4∑

i=1

xi φ̂i(x̂, ŷ) and y =
4∑

i=1

yi φ̂i(x̂, ŷ).

Sketch the image, e, of ê under the map F .

Show that F : ê→ e is invertible if

x2 y4 + x4 y3 > x2 y3.

Show that this condition is equivalent to the point P4 being above the straight
line joining P2 to P3; that is, e is a convex quadrilateral.

Find the area of e.

Assuming that F is invertible; find φi(
1
4
(x2 + x4),

1
4
(y3 + y4)), where

φi(x, y) := φ̂i(F
−1(x, y)) ∀ (x, y) ∈ e, i = 1→ 4.
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