UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

BSc/MSci EXAMINATION(MATHEMATICS) MAY-JUNE 2002

This paper is also taken for the relevant examination for the Associateship

M3N8/M4N8/MSA8

DATE: Tuesday 28 May 2002

FINITE ELEMENT METHOD

TIME : $2.00 \mathrm{pm}-4.00 \mathrm{pm}$

Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Given $\alpha, \beta, g_{i}, i=1 \rightarrow 4, \in \mathbb{R}, \sigma \in C^{2}[0,1], b \in C^{1}[0,1]$ and $c, f \in C[0,1]$; where

$$
\sigma(x) \geq \sigma_{0}>0 \quad \text { and } \quad b(x), c(x), \alpha, \beta \geq 0 \quad \forall x \in[0,1] ;
$$

consider the following problem:
(P1) Find u such that

$$
\begin{gathered}
\left(\sigma u^{\prime \prime}\right)^{\prime \prime}-\left(b u^{\prime}\right)^{\prime}+c u=f \quad \text { in }(0,1), \\
u(0)=g_{1}, \quad u^{\prime}(1)=g_{2}, \quad\left[\sigma u^{\prime \prime}-\alpha u^{\prime}\right](0)=g_{3} \\
\text { and } \quad\left[\left(\sigma u^{\prime \prime}\right)^{\prime}-b u^{\prime}-\beta u\right](1)=g_{4} .
\end{gathered}
$$

Let

$$
V\left(g_{1}, g_{2}\right):=\left\{v \in H^{2}(0,1): v(0)=g_{1} \quad \text { and } \quad v^{\prime}(1)=g_{2}\right\} .
$$

Show that a solution of $(\mathrm{P} 1)$ is a solution of the following problem:
(P2) Find $u \in V\left(g_{1}, g_{2}\right)$ such that

$$
a(u, v)=\ell(v) \quad \forall v \in V(0,0)
$$

where for all $w, v \in H^{2}(0,1)$

$$
\begin{aligned}
a(w, v) & :=\int_{0}^{1}\left[\sigma w^{\prime \prime} v^{\prime \prime}+b w^{\prime} v^{\prime}+c w v\right] \mathrm{d} x+\alpha w^{\prime}(0) v^{\prime}(0)+\beta w(1) v(1) \\
\ell(v) & :=\int_{0}^{1} f v \mathrm{~d} x-g_{3} v^{\prime}(0)-g_{4} v(1)
\end{aligned}
$$

Show that problem (P2) is equivalent to the following problem:
(P3) Find $u \in V\left(g_{1}, g_{2}\right)$ such that

$$
a(u, u)-2 \ell(u) \leq a(w, w)-2 \ell(w) \quad \forall w \in V\left(g_{1}, g_{2}\right) .
$$

Show that the solution of (P2), and hence (P1), is unique.
2. Let $\Omega \subset \mathbb{R}^{2}$ be a convex polygonal region with boundary $\partial \Omega$. For $m \in \mathbb{N}$, let $H^{m}(\Omega)$ be the Sobolev space with norm

$$
\|v\|_{m, \Omega}:=\left\{\sum_{i, j: 0 \leq i+j \leq m} \int_{\Omega}\left[\frac{\partial^{i+j} v}{\partial x^{i} \partial y^{j}}\right]^{2} \mathrm{~d} x \mathrm{~d} y\right\}^{1 / 2} .
$$

Given $\sigma \in C^{1}(\bar{\Omega})$ and $c \in C(\bar{\Omega})$, where

$$
\sigma(x, y) \geq \sigma_{0}>0 \quad \text { and } \quad c(x, y) \geq c_{0}>0 \quad \forall(x, y) \in \bar{\Omega}
$$

let A be the differential operator

$$
A v:=-\underline{\nabla} \cdot(\sigma \underline{\nabla} v)+c v .
$$

For all $f \in L^{2}(\Omega)$ assume there exists a solution $w \in H^{2}(\Omega)$, dependent on f, to the problem

$$
A w=f \quad \text { in } \Omega, \quad w=0 \quad \text { on } \partial \Omega ;
$$

and that

$$
\|w\|_{2, \Omega} \leq M_{1}\left[\|f\|_{0, \Omega}+\|w\|_{1, \Omega}\right],
$$

where M_{1} is a positive constant depending only on σ, c and Ω. By considering its weak formulation show that w is unique and that

$$
\|w\|_{2, \Omega} \leq M_{2}\|f\|_{0, \Omega}
$$

where M_{2} is a positive constant depending only on σ, c and Ω.
Let T^{h} be a partitioning of Ω into regular triangles τ with maximum diameter h. Explain briefly what is meant by the term regular.
Define

$$
S^{h}:=\left\{v^{h} \in C(\bar{\Omega}): v^{h} \text { linear on } \tau, \forall \tau \in T^{h}\right\} .
$$

Formulate the finite element approximation $w^{h} \in S^{h}$ to the above problem. Show that for any given $f \in L^{2}(\Omega), w^{h}$ exists and is unique.

Defining $e:=w-w^{h}$, show that there exists a positive constant C_{1} such that

$$
\|e\|_{1, \Omega} \leq C_{1} h\|f\|_{0, \Omega}
$$

[You may use the result that for all $v \in H^{2}(\Omega)$ there exists $v_{I}^{h} \in S^{h}$ such that

$$
\left\|v-v_{I}^{h}\right\|_{1, \Omega} \leq C h\|v\|_{2, \Omega}
$$

where C is a positive constant independent of v and $h]$.
By considering the weak formulation of the auxiliary problem: find z such that

$$
A z=e \text { in } \Omega, \quad z=0 \text { on } \partial \Omega ;
$$

show that there exists a positive constant C_{2} such that

$$
\|e\|_{0, \Omega} \leq C_{2} h^{2}\|f\|_{0, \Omega} .
$$

M3N8/M4N8/MSA8: Page 3 of 6
3. Let τ be a triangle with vertices P_{1}, P_{2} and P_{3}. For $i=1 \rightarrow 3$, let $\phi_{i}(x, y)$ be the linear function such that

$$
\phi_{i}\left(P_{j}\right)=\delta_{i, j} \quad j=1 \rightarrow 3
$$

State, without proof, the entries

$$
\int_{\tau} \underline{\nabla} \phi_{i} \cdot \underline{\nabla} \phi_{j} \mathrm{~d} x \mathrm{~d} y \quad i, j=1 \rightarrow 3
$$

of the "element stiffness matrix" for τ in terms of the cotangents of its angles. Consider the problem: Find u such that

$$
-\nabla^{2} u=2 \quad \text { in the rectangle } \quad 0<x<2, \quad 0<y<1
$$

subject to the boundary conditions

$$
\begin{aligned}
u(x, 0) & =x^{2}+x, & u(x, 1)=x^{2}+x-2 & \text { for } \\
\frac{\partial u}{\partial x}(0, y)=1, & u(2, y)=6-2 y^{2} & \text { for } & 0 \leq y \leq 1
\end{aligned}
$$

Formulate and compute the continuous piecewise linear approximation to the above problem based on the triangulation given in the figure below, where the nodes $1 \rightarrow 9$ have (x, y) coordinates $(0,0),(1,0),(2,0),\left(0, \frac{1}{2}\right),\left(1, \frac{1}{2}\right),\left(2, \frac{1}{2}\right)$, $(0,1),(1,1)$ and $(2,1)$ respectively.

4. Let \widehat{e} be the tetrahedron in $(\widehat{x}, \widehat{y}, \widehat{z})$ space with vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$ labelled $\widehat{P}_{1}, \widehat{P}_{2}, \widehat{P}_{3}$ and \widehat{P}_{4} respectively.
Let

$$
\begin{array}{ll}
\widehat{P}_{123}:=\frac{1}{3}\left[\widehat{P}_{1}+\widehat{P}_{2}+\widehat{P}_{3}\right], & \widehat{P}_{124}:=\frac{1}{3}\left[\widehat{P}_{1}+\widehat{P}_{2}+\widehat{P}_{4}\right], \\
\widehat{P}_{134}:=\frac{1}{3}\left[\widehat{P}_{1}+\widehat{P}_{3}+\widehat{P}_{4}\right], & \widehat{P}_{234}:=\frac{1}{3}\left[\widehat{P}_{2}+\widehat{P}_{3}+\widehat{P}_{4}\right] .
\end{array}
$$

Consider the following quadrature rules

$$
\begin{aligned}
& \widehat{Q}_{\widehat{e}}^{(1)}(\widehat{v}):=\frac{1}{24}\left[\widehat{v}\left(\widehat{P}_{1}\right)+\widehat{v}\left(\widehat{P}_{2}\right)+\widehat{v}\left(\widehat{P}_{3}\right)+\widehat{v}\left(\widehat{P}_{4}\right)\right] \\
& \widehat{Q}_{\widehat{e}}^{(2)}(\widehat{v}):=\frac{1}{24}\left[\widehat{v}\left(\widehat{P}_{123}\right)+\widehat{v}\left(\widehat{P}_{124}\right)+\widehat{v}\left(\widehat{P}_{134}\right)+\widehat{v}\left(\widehat{P}_{234}\right)\right],
\end{aligned}
$$

approximating

$$
\int_{\widehat{e}} \widehat{v}(\widehat{x}, \widehat{y}, \widehat{z}) \mathrm{d} \widehat{x} \mathrm{~d} \widehat{y} \mathrm{~d} \widehat{z}
$$

Show that $\widehat{Q}_{\widehat{e}}^{(1)}(\widehat{v})$ and $\widehat{Q}_{\widehat{e}}^{(2)}(\widehat{v})$ are exact for all $\widehat{v} \in \mathcal{P}_{1}(\widehat{x}, \widehat{y}, \widehat{z})$, where

$$
\mathcal{P}_{k}(\widehat{x}, \widehat{y}, \widehat{z}):=\{\text { all polynomials in } \widehat{x}, \widehat{y} \text { and } \widehat{z} \text { of degree } \leq k\} .
$$

[You may use the result that

$$
\left.\int_{\widehat{e}} \widehat{x}^{i} \widehat{y}^{j} \widehat{z}^{k} \mathrm{~d} \widehat{x} \mathrm{~d} \widehat{y} \mathrm{~d} \widehat{z}=\frac{i!j!k!}{(i+j+k+3)!} \quad \forall i, j, k \in \mathbb{N} .\right]
$$

Find ω such that

$$
\omega \widehat{Q}_{\widehat{e}}^{(1)}(\widehat{v})+(1-\omega) \widehat{Q}_{\widehat{e}}^{(2)}(\widehat{v})
$$

is exact for all $\widehat{v} \in \mathcal{P}_{2}(\widehat{x}, \widehat{y}, \widehat{z})$.
Show that this quadrature rule is also exact for all $\widehat{v} \in \mathcal{P}_{3}(\widehat{x}, \widehat{y}, \widehat{z})$.
Let e be the tetrahedron with vertices P_{i}, having coordinates $\left(x_{i}, y_{i}, z_{i}\right), i=$ $1 \rightarrow 4$. Derive a quadrature rule approximating

$$
\int_{e} v(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

which is exact for all $v \in \mathcal{P}_{3}(x, y, z)$. State precisely the sampling points in terms of the coordinates $\left(x_{i}, y_{i}, z_{i}\right), i=1 \rightarrow 4$, and the weights in terms of the volume of e.
5. Let \widehat{e} be the square in the $(\widehat{x}, \widehat{y})$ plane with vertices $(-1,-1),(1,-1),(-1,1)$ and $(1,1)$ labelled $\widehat{P}_{1}, \widehat{P}_{2}, \widehat{P}_{3}$ and \widehat{P}_{4} respectively. In addition there are nodes $\widehat{P}_{5}, \widehat{P}_{6}, \widehat{P}_{7}$ and \widehat{P}_{8} on \widehat{e} with coordinates $(0,-1),(-1,0),(1,0)$ and $(0,1)$ respectively. Let B be the set of functions defined on \widehat{e} such that
$f \in B \Longrightarrow f(\widehat{x}, \widehat{y})=a_{1}+a_{2} \widehat{x}+a_{3} \widehat{y}+a_{4} \widehat{x}^{2}+a_{5} \widehat{x} \widehat{y}+a_{6} \widehat{y}^{2}+a_{7} \widehat{x}^{2} \widehat{y}+a_{8} \widehat{x} \widehat{y}^{2}$ for some constants $\left\{a_{i}\right\}_{i=1}^{8}$. Let $\left\{\widehat{\phi}_{i}\right\}_{i=1}^{8}$ be the basis functions such that

$$
\widehat{\phi}_{i} \in B \quad \text { and } \quad \widehat{\phi}_{i}\left(\widehat{P}_{j}\right)=\delta_{i, j} \quad i, j=1 \rightarrow 8
$$

Find $\widehat{\phi}_{8}$.
Let the points P_{j} have coordinates $\left(x_{j}, y_{j}\right), j=1 \rightarrow 8$, such that $P_{j} \equiv \widehat{P}_{j}$ for $j=1 \rightarrow 7 ;\left|x_{8}\right|<\frac{1}{2}$ and $y_{8}>0$. Consider the mapping $F:(\widehat{x}, \widehat{y}) \in \widehat{e} \rightarrow(x, y)$ given by

$$
x=\sum_{i=1}^{8} x_{i} \widehat{\phi}_{i}(\widehat{x}, \widehat{y}) \quad \text { and } \quad y=\sum_{i=1}^{8} y_{i} \widehat{\phi}_{i}(\widehat{x}, \widehat{y})
$$

Sketch the image, e, of \widehat{e} under the map F.
Show that F is invertible.
Find $\phi_{8}\left(\frac{1}{2} x_{8}, \frac{1}{2}\left(y_{8}-1\right)\right)$ and $\underline{\nabla} \phi_{8}\left(\frac{1}{2} x_{8}, \frac{1}{2}\left(y_{8}-1\right)\right)$, where

$$
\phi_{8}(x, y):=\widehat{\phi}_{8}\left(F^{-1}(x, y)\right) \quad \forall(x, y) \in e .
$$

