UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

BSc/MSci EXAMINATION(MATHEMATICS) MAY-JUNE 2002

This paper is also taken for the relevant examination for the Associateship

M3N8/M4N8/MSA8 FINITE ELEMENT METHOD

DATE : Tuesday 28 May 2002

Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.

TIME : 2.00pm - 4.00pm

Calculators may not be used.

©University of London 2002

M3N8/M4N8/MSA8: Page 1 of 6

1. Given $\alpha, \beta, g_i, i = 1 \to 4, \in \mathbb{R}, \sigma \in C^2[0, 1], b \in C^1[0, 1]$ and $c, f \in C[0, 1]$; where

$$\sigma(x) \ge \sigma_0 > 0$$
 and $b(x), c(x), \alpha, \beta \ge 0 \quad \forall \ x \in [0, 1];$

consider the following problem:

(P1) Find u such that

$$(\sigma u'')'' - (b u')' + c u = f \text{ in } (0, 1),$$

 $u(0) = g_1, \quad u'(1) = g_2, \quad [\sigma u'' - \alpha u'](0) = g_3$
and $[(\sigma u'')' - b u' - \beta u](1) = g_4.$

Let

$$V(g_1, g_2) := \left\{ v \in H^2(0, 1) : v(0) = g_1 \text{ and } v'(1) = g_2 \right\}$$

Show that a solution of (P1) is a solution of the following problem:

(P2) Find $u \in V(g_1, g_2)$ such that

$$a(u,v) = \ell(v) \qquad \forall v \in V(0,0);$$

where for all $w, v \in H^2(0, 1)$

$$a(w,v) := \int_0^1 [\sigma w'' v'' + b w' v' + c w v] dx + \alpha w'(0) v'(0) + \beta w(1) v(1),$$

$$\ell(v) := \int_0^1 f v dx - g_3 v'(0) - g_4 v(1).$$

Show that problem (P2) is *equivalent* to the following problem:

(P3) Find $u \in V(g_1, g_2)$ such that

$$a(u, u) - 2\ell(u) \leq a(w, w) - 2\ell(w) \quad \forall w \in V(g_1, g_2).$$

Show that the solution of (P2), and hence (P1), is unique.

M3N8/M4N8/MSA8: Page 2 of 6

2. Let $\Omega \subset \mathbb{R}^2$ be a convex polygonal region with boundary $\partial \Omega$. For $m \in \mathbb{N}$, let $H^m(\Omega)$ be the Sobolev space with norm

$$\|v\|_{m,\Omega} := \left\{ \sum_{i,j:\, 0 \le i+j \le m} \int_{\Omega} \left[\frac{\partial^{i+j}v}{\partial x^i \partial y^j} \right]^2 \, \mathrm{d}x \, \mathrm{d}y \right\}^{1/2}$$

Given $\sigma \in C^1(\overline{\Omega})$ and $c \in C(\overline{\Omega})$, where

$$\sigma(x,y) \ge \sigma_0 > 0 \quad ext{and} \quad c(x,y) \ge c_0 > 0 \quad \forall \; (x,y) \in \overline{\Omega},$$

let A be the differential operator

$$Av := -\underline{\nabla} \cdot (\sigma \, \underline{\nabla} v) + cv.$$

For all $f \in L^2(\Omega)$ assume there exists a solution $w \in H^2(\Omega)$, dependent on f, to the problem

$$A w = f \text{ in } \Omega, \qquad w = 0 \text{ on } \partial \Omega;$$

and that

$$||w||_{2,\Omega} \le M_1 [||f||_{0,\Omega} + ||w||_{1,\Omega}],$$

where M_1 is a positive constant depending only on σ , c and Ω . By considering its weak formulation show that w is unique and that

$$||w||_{2,\Omega} \le M_2 \, ||f||_{0,\Omega},$$

where M_2 is a positive constant depending only on σ , c and Ω .

Let T^h be a partitioning of Ω into regular triangles τ with maximum diameter h. Explain briefly what is meant by the term regular.

Define

$$S^{h} := \{ v^{h} \in C(\overline{\Omega}) : v^{h} \text{ linear on } \tau, \ \forall \ \tau \in T^{h} \}.$$

Formulate the finite element approximation $w^h \in S^h$ to the above problem. Show that for any given $f \in L^2(\Omega)$, w^h exists and is unique.

Defining $e := w - w^h$, show that there exists a positive constant C_1 such that

$$||e||_{1,\Omega} \le C_1 h ||f||_{0,\Omega}.$$

[You may use the result that for all $v \in H^2(\Omega)$ there exists $v_I^h \in S^h$ such that

$$\|v - v_I^h\|_{1,\Omega} \le C \, h \, \|v\|_{2,\Omega},$$

where C is a positive constant independent of v and h].

By considering the weak formulation of the auxiliary problem: find z such that

$$A z = e \text{ in } \Omega, \qquad z = 0 \text{ on } \partial \Omega;$$

show that there exists a positive constant C_2 such that

$$\|e\|_{0,\Omega} \le C_2 h^2 \, \|f\|_{0,\Omega}$$

M3N8/M4N8/MSA8: Page 3 of 6

3. Let τ be a triangle with vertices P_1 , P_2 and P_3 . For $i = 1 \rightarrow 3$, let $\phi_i(x, y)$ be the linear function such that

$$\phi_i(P_j) = \delta_{i,j} \quad j = 1 \to 3.$$

State, without proof, the entries

$$\int_{\tau} \underline{\nabla} \phi_i \cdot \underline{\nabla} \phi_j \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad i, j = 1 \to 3$$

of the "element stiffness matrix" for τ in terms of the cotangents of its angles.

Consider the problem: Find u such that

$$-\nabla^2 u = 2$$
 in the rectangle $0 < x < 2, \quad 0 < y < 1;$

subject to the boundary conditions

$$u(x,0) = x^2 + x,$$
 $u(x,1) = x^2 + x - 2$ for $0 \le x \le 2;$
 $\frac{\partial u}{\partial x}(0,y) = 1,$ $u(2,y) = 6 - 2y^2$ for $0 \le y \le 1.$

Formulate and compute the continuous piecewise linear approximation to the above problem based on the triangulation given in the figure below, where the nodes $1 \rightarrow 9$ have (x, y) coordinates (0, 0), (1, 0), (2, 0), $(0, \frac{1}{2})$, $(1, \frac{1}{2})$, $(2, \frac{1}{2})$, (0, 1), (1, 1) and (2, 1) respectively.

M3N8/M4N8/MSA8: Page 4 of 6

4. Let \hat{e} be the tetrahedron in $(\hat{x}, \hat{y}, \hat{z})$ space with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0)and (0, 0, 1) labelled \hat{P}_1 , \hat{P}_2 , \hat{P}_3 and \hat{P}_4 respectively. Let

$$\hat{P}_{123} := \frac{1}{3} [\hat{P}_1 + \hat{P}_2 + \hat{P}_3], \qquad \hat{P}_{124} := \frac{1}{3} [\hat{P}_1 + \hat{P}_2 + \hat{P}_4], \\ \hat{P}_{134} := \frac{1}{3} [\hat{P}_1 + \hat{P}_3 + \hat{P}_4], \qquad \hat{P}_{234} := \frac{1}{3} [\hat{P}_2 + \hat{P}_3 + \hat{P}_4].$$

Consider the following quadrature rules

$$\begin{split} \widehat{Q}_{\widehat{e}}^{(1)}(\widehat{v}) &:= \frac{1}{24} \left[\widehat{v}(\widehat{P}_{1}) + \widehat{v}(\widehat{P}_{2}) + \widehat{v}(\widehat{P}_{3}) + \widehat{v}(\widehat{P}_{4}) \right], \\ \widehat{Q}_{\widehat{e}}^{(2)}(\widehat{v}) &:= \frac{1}{24} \left[\widehat{v}(\widehat{P}_{123}) + \widehat{v}(\widehat{P}_{124}) + \widehat{v}(\widehat{P}_{134}) + \widehat{v}(\widehat{P}_{234}) \right], \end{split}$$

approximating

$$\int_{\widehat{e}} \widehat{v}(\widehat{x}, \widehat{y}, \widehat{z}) \, \mathrm{d}\widehat{x} \, \mathrm{d}\widehat{y} \, \mathrm{d}\widehat{z}.$$

Show that $\widehat{Q}_{\widehat{e}}^{(1)}(\widehat{v})$ and $\widehat{Q}_{\widehat{e}}^{(2)}(\widehat{v})$ are exact for all $\widehat{v} \in \mathcal{P}_1(\widehat{x}, \widehat{y}, \widehat{z})$, where

 $\mathcal{P}_k(\widehat{x}, \widehat{y}, \widehat{z}) := \{ \text{ all polynomials in } \widehat{x}, \widehat{y} \text{ and } \widehat{z} \text{ of degree } \leq k \}.$

Vou may use the result that

$$\int_{\widehat{e}} \widehat{x}^i \widehat{y}^j \widehat{z}^k \, \mathrm{d}\widehat{x} \, \mathrm{d}\widehat{y} \, \mathrm{d}\widehat{z} = \frac{i! \; j! \; k!}{(i+j+k+3)!} \quad \forall \; i, \; j, \; k \in \mathbb{N}. \; \Big]$$

Find ω such that

$$\omega \, \widehat{Q}_{\widehat{e}}^{(1)}(\widehat{v}) + (1-\omega) \, \widehat{Q}_{\widehat{e}}^{(2)}(\widehat{v})$$

is exact for all $\hat{v} \in \mathcal{P}_2(\hat{x}, \hat{y}, \hat{z})$.

Show that this quadrature rule is also exact for all $\hat{v} \in \mathcal{P}_3(\hat{x}, \hat{y}, \hat{z})$.

Let e be the tetrahedron with vertices P_i , having coordinates (x_i, y_i, z_i) , $i = 1 \rightarrow 4$. Derive a quadrature rule approximating

$$\int_{e} v(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z,$$

which is exact for all $v \in \mathcal{P}_3(x, y, z)$. State precisely the sampling points in terms of the coordinates (x_i, y_i, z_i) , $i = 1 \rightarrow 4$, and the weights in terms of the volume of e.

M3N8/M4N8/MSA8: Page 5 of 6

5. Let \hat{e} be the square in the (\hat{x}, \hat{y}) plane with vertices (-1, -1), (1, -1), (-1, 1)and (1, 1) labelled \hat{P}_1 , \hat{P}_2 , \hat{P}_3 and \hat{P}_4 respectively. In addition there are nodes \hat{P}_5 , \hat{P}_6 , \hat{P}_7 and \hat{P}_8 on \hat{e} with coordinates (0, -1), (-1, 0), (1, 0) and (0, 1) respectively. Let *B* be the set of functions defined on \hat{e} such that

$$f \in B \Longrightarrow f(\widehat{x}, \widehat{y}) = a_1 + a_2 \,\widehat{x} + a_3 \,\widehat{y} + a_4 \,\widehat{x}^2 + a_5 \,\widehat{x} \,\widehat{y} + a_6 \,\widehat{y}^2 + a_7 \,\widehat{x}^2 \,\widehat{y} + a_8 \,\widehat{x} \,\widehat{y}^2$$

for some constants $\{a_i\}_{i=1}^8$. Let $\{\widehat{\phi}_i\}_{i=1}^8$ be the basis functions such that

$$\widehat{\phi}_i \in B \qquad ext{and} \qquad \widehat{\phi}_i(\widehat{P}_j) \ = \ \delta_{i,j} \qquad i, \ j = 1 o 8.$$

Find $\widehat{\phi}_8$.

Let the points P_j have coordinates (x_j, y_j) , $j = 1 \to 8$, such that $P_j \equiv \widehat{P}_j$ for $j = 1 \to 7$; $|x_8| < \frac{1}{2}$ and $y_8 > 0$. Consider the mapping $F : (\widehat{x}, \widehat{y}) \in \widehat{e} \to (x, y)$ given by

$$x = \sum_{i=1}^{8} x_i \widehat{\phi}_i(\widehat{x}, \widehat{y})$$
 and $y = \sum_{i=1}^{8} y_i \widehat{\phi}_i(\widehat{x}, \widehat{y}).$

Sketch the image, e, of \hat{e} under the map F.

Show that F is invertible.

Find $\phi_8(\frac{1}{2}x_8, \frac{1}{2}(y_8-1))$ and $\underline{\nabla}\phi_8(\frac{1}{2}x_8, \frac{1}{2}(y_8-1))$, where

$$\phi_8(x,y) := \widehat{\phi}_8(F^{-1}(x,y)) \qquad \forall \ (x,y) \in e.$$

M3N8/M4N8/MSA8: Page 6 of 6