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1. Let f : Rn 7→ R be a smooth function, which is bounded below, and consider the iteration

xi+1 = xi + αipi;

where the direction pi ∈ Rn satisfies ∇f(xi)Tpi < 0 and αi > 0 satisfies the two
conditions

(†)
f(xi + αipi) ≤ f(xi) + ραi∇f(xi)

Tpi

∇f(xi + αipi)
Tpi ≥ σ∇f(xi)

Tpi

for fixed parameters 0 < ρ < σ < 1 independent of i.

(a) Illustrate the condition ∇f(xi)Tpi < 0 by sketching a typical graph of

φi(α) ≡ f(xi + αpi) for α ≥ 0.

(b) Re-write the two conditions of (†) in terms of φi(α) and φ′i(α), and indicate clearly
on your graph in (a) the values of α ≥ 0 which satisfy the first condition of (†).

(c) You are now asked to prove that it will always be possible to find an αi > 0 which

satisfies (†).

(i) Explain why ∃ α̂i > 0 such that the first condition of (†) is satisfied ∀α ∈ [0, α̂i].

(ii) Apply the point mean value theorem to φi(α̂i)− φi(0) and carefully explain why
this produces an αi > 0 satisfying both conditions of (†).

(d) Make the two additional assumptions that the iteration does not finitely terminate,

i.e. ∇f(xi) 6= 0 ∀i ≥ 0, and that the Hessian matrix H(x) ≡ ∇2f(x) satisfies the
bound

(‡) ‖H(x)‖ ≤ Hmax ∀x ∈ R
n.

(i) Combine (‡) and the second condition in (†) to prove that

αi ≥
σ − 1
Hmax

∇f(xi)Tpi
‖pi‖2

.

(ii) Insert this result into the first condition of (†) to obtain

f(xi+1) ≤ f(xi)− C cos
2 θi‖∇f(xi)‖

2,

where C > 0 is a constant independent of i and

cos θi ≡
−∇f(xi)Tpi
‖∇f(xi)‖‖pi‖

.

Write down the formula for C and explain why θi ∈ (−π2 ,
π
2
).

(iii) Use the fact that f is bounded below to prove that

∞∑

i=0

cos2 θi‖∇f(xi)‖
2

is finite.

(iv) Explain why limi→∞∇f(xi) = 0 if either pi ≡ −∇f(xi) ∀i ≥ 0 or

∃ θ̂ ∈ (0, π
2
) such that θi ∈ [−θ̂, θ̂] ∀i ≥ 0.
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2. (a) Explain carefully one step of the Newton + trust region algorithm for the unconstrained

optimisation problem

min f(x),

where f : Rn 7→ R is a smooth function, which may be applied even when the
current Hessian matrix fails to be positive definite. Your explanation should include

the following points.

(i) What are the algorithm parameters?

(ii) What is the input data at the beginning of the step, and what is the output data

ready for the next step?

(iii) What is the constrained quadratic optimisation problem that provides a tentative

increment? [You do not have to describe how to solve constrained quadratic

optimisation problems.]

(iv) How does the algorithm decide whether to accept or reject the tentative

increment, and what strategy is followed in each case?

(b) Consider the constrained quadratic optimisation problem

min q(x) ≡ c− bTx+ 1
2
xTGx subject to ‖x‖ ≤ Δ,

where q : Rn 7→ R with c ∈ R, b ∈ Rn, G an n × n symmetric matrix, and Δ > 0.
Prove that x? solves this problem if and only if ∃μ? ≥ 0 such that

• [G+ μ?I]x? = b,

• the complementarity condition μ? [‖x?‖ −Δ] = 0 holds,

• G+ μ?I is positive semi-definite.

In addition, if G + μ?I is positive definite, show that x? is the unique solution of the

constrained quadratic optimisation problem.

[You are reminded of the following result, which you may use without proof.

If f : Rn 7→ R and c : Rn 7→ R are smooth functions and y? ∈ Rn is a local
minimum for the inequality constrained problem

min f(x)

subject to c(x) ≥ 0,

then ∃λ? ≥ 0 such that

g(y?) = λ?gc(y
?), λ?c(y?) = 0

gc(y
?)Tx = 0 ⇒ xT [H(y?)− λ?Hc(y

?)]x ≥ 0,

where g(x) ≡ ∇f(x), H(x) ≡ ∇2f(x), gc(x) ≡ ∇c(x) and Hc(x) ≡
∇2c(x).]
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3. Consider the linear equality constrained problem

(†)
min f(x)

subject to Ax = d;

where f : Rn 7→ R is a smooth function, A ∈ Rm×n with 1 ≤ m < n and d ∈ Rm.

(a) Define what is meant by a local minimum for (†).

(b) State carefully the orthogonal subspace decomposition of Rn depending on R ⊆ Rn,
the range-space of AT , and N ⊆ Rn, the null-space of A.

(c) Derive the first derivative necessary condition for x? ∈ Rn to be a local minimum of
(†): explaining your condition both in terms of the orthogonal subspace decomposition
and by using Lagrange multipliers. Why will the Lagrange multipliers only be unique

if A has full rank?

(d) If x̂ ∈ Rn satisfies Ax̂ = d, use the orthogonal subspace decomposition to describe
the solutions (p̂, μ̂) ∈ Rn × Rm of

(
I AT

A 0

)(
p̂

μ̂

)

=

(
−∇f(x̂)
0

)

.

Explain why this linear system will always have a solution with unique p̂, but μ̂ will

only be unique if A has full rank.

(i) If p̂ = 0, explain why x̂ satisfies the first derivative necessary condition for a

local minimum of (†).

(ii) If p̂ 6= 0, explain carefully why

p ≡
p̂

‖p̂‖
solves






min∇f(x̂)Tp

Ap = 0

‖p‖ = 1






and why it is sensible to call p̂ the steepest descent direction at x̂ for (†).
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4. (a) Consider the linear inequality constrained problem

(†)
min f(x)

subject to d− Ax ≥ 0;

where f : Rn 7→ R is a smooth function, A ∈ Rm×n and d ∈ Rm. Suppose
x̂ ∈ Rn satisfies d − Ax̂ ≥ 0 and Ã ∈ Rt×n, with 0 < t < n, is the submatrix of A
corresponding to the active constraints at x̂. Assuming Ã has full rank, explain why

P ≡ I− ÃT
[
ÃÃT

]−1
Ã ∈ Rn×n

is the orthogonal projection of Rn onto the null-space of Ã, and define

ẑ ≡ P∇f(x̂) ∈ Rn.

(i) If ẑ 6= 0, prove that x̂ + εẑ is feasible for (†) when |ε| is sufficiently small and
also prove that f(x̂+ εẑ) < f(x̂) for ε < 0 and |ε| is sufficiently small.

(ii) If ẑ = 0 and

0 ≤
[
ÃÃT

]−1
Ã∇f(x̂) ∈ Rt,

carefully verify that x̂ satisfies the KKT conditions for (†).

(b) Consider the two quadratic linear inequality constrained problems

min bTx+ 1
2
xTGx

subject to d− Ax ≥ 0
and

min cTu+ 1
2
uTHu

subject to u ≥ 0:

where x ∈ Rn, b ∈ Rn, G ∈ Rn×n is symmetric and invertible, A ∈ Rm×n, d ∈ Rm,
u ∈ Rm,

H ≡ AG−1AT ∈ Rm×m and c ≡ AG−1b+ d ∈ Rm.

Write down the KKT conditions for each of these problems (using λ and μ for the

respective Lagrange multipliers). If (x?,λ?) satisfies the KKT conditions for the first

problem, verify that

(u?,μ?) ≡ (λ?,d− Ax?)

satisfies the KKT conditions for the second problem. On the other hand, if (u?,μ?)

satisfies the KKT conditions for the second problem, verify that

(x?,λ?) ≡
(
−G−1

[
ATu? + b

]
,u?
)

satisfies the KKT conditions for the first problem.
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5. Consider the nonlinear inequality constrained problem

min f(x) ≡
(
x1 − 9

4

)2
+ (x2 − 2)

2

subject to

{
x2 − x

2
1 ≥ 0,

6− x2 − x1 ≥ 0,
x1 ≥ 0.

(a) Graph the constraints and draw contours for the objective function.

(b) Write down the KKT conditions and verify that these are satisfied at the point

x? ≡
(
3
2
, 9
4

)T
.

(c) Use your graph to present a geometrical interpretation of the KKT conditions at x?.

(d) Explain why the objective function is strictly convex and the feasible set is convex.

Use these results to carefully prove that x? is the strict global constrained minimum

for the above problem.
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