
UNIVERSITY OF LONDON

BSc and MSci EXAMINATIONS (MATHEMATICS)

May–June 2006

This paper is also taken for the relevant examination for the Associateship.

M3N3/M4N3

Optimisation

Date: Wednesday, 31st May 2006 Time: 2 pm – 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly

complete answers.

Calculators may not be used.

c© 2006 University of London M3N3/M4N3 Page 1 of 6



1. Let f : Rn 7→ R be the quadratic function

f(x) ≡ c− bTx+ 1
2
xTGx,

where c ∈ R, b ∈ Rn and G ∈ Rn×n is symmetric and positive definite. Explain why ∇f has
exactly one zero x? ∈ Rn. If a new vector norm is defined by

‖x‖G ≡
√
xTGx ∀x ∈ Rn,

show that

‖x− x?‖2G = g(x)
TG−1g(x) ∀x ∈ Rn,

where g ≡∇f , and

f(x)− f(x?) = 1
2
‖x− x?‖2G ∀x ∈ Rn.

Explain why x? is the strict global minimum of f .

Consider the steepest descent algorithm with exact line search for finding x?, i.e.

(†) xi+1 = xi − αig(xi),

and explain carefully what the formula for αi is, and how it is derived. (A graph illustrating

the line search would be helpful here.) Analyze the convergence of this algorithm by using the

above vector norm to establish the following results.

(a) Use (†) to obtain

‖xi − x
?‖2G − ‖xi+1 − x

?‖2G = 2αig(xi)
TG [xi − x

?]− α2ig(xi)
TGg(xi)

and hence

‖xi − x
?‖2G − ‖xi+1 − x

?‖2G =

[
g(xi)

Tg(xi)
]2

g(xi)TGg(xi)
.

(b) Use the result from (a) to show that

‖xi+1 − x
?‖2G =

{

1−

[
g(xi)

Tg(xi)
]2

[g(xi)TGg(xi)] [g(xi)TG−1g(xi)]

}

‖xi − x
?‖2G.

(c) Assuming the Kantorovich inequality

[
xTx

]2

[xTGx] [xTG−1x]
≤
4λmaxλmin

[λmax + λmin]
2 ∀x 6= 0 ∈ Rn,

where λmax and λmin are the largest and smallest eigenvalues of G respectively; explain

why

0 <
4λmaxλmin

[λmax + λmin]
2 ≤ 1.

Use the result from (b) to deduce

‖xi+1 − x
?‖2G ≤

(
λmax − λmin
λmax + λmin

)2
‖xi − x

?‖2G.
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2. Let f : Rn 7→ R be a smooth uniformly convex function: i.e. ∃Hmin > 0 such that

f(y)− f(x)− g(x)T [y − x] ≥ 1
2
Hmin‖y − x‖

2

[g(y)− g(x)]T [y − x] ≥ Hmin‖y − x‖
2

zTH(x)z ≥ Hmin‖z‖
2

for all x,y, z ∈ Rn, where g(x) ≡∇f(x) and H(x) ≡ ∇2f(x) are respectively the gradient
vector and Hessian matrix of f at x.

(a) (i) Prove that f(x) → ∞ as ‖x‖ → ∞, and hence deduce that f has a global
minimum, at x? say.

(ii) Given that g(x?) = 0, prove that g has no other zero and that x? is the strict

global minimum of f .

(b) For a given starting value x0 ∈ Rn, let

xi+1 = xi + αipi, where pi ≡ −H(xi)
−1g(xi),

be a safeguarded Newton iteration: with the steplength αi > 0 chosen to satisfy

(†)
f(xi)− f(xi+1) ≥ ραig(xi)

TH(xi)
−1g(xi)

g(xi+1)
Tpi ≥ σg(xi)

Tpi

for some fixed 0 < ρ < σ < 1 independent of i. Establish the convergence of the

iteration through the following steps.

(i) Explain why there exists Hmax > 0 such that

(‡) f(x) ≤ f(x0)⇒ ‖H(x)‖ ≤ Hmax.

(ii) Use the first inequality in (†) to prove that {αig(xi)TH(xi)−1g(xi)} converges to
zero as i→∞.

(iii) Use the second inequality in (†), together with (‡) to bound

[g(xi+1)− g(xi)]
T
pi,

to show that {αi} cannot approach zero; therefore proving that

{g(xi)
TH(xi)

−1g(xi)} → 0 as i→∞.

(iv) Use (‡) to show that {g(xi)} → 0 as i → ∞ and then use the uniform convexity
of f to prove that {xi} → x? as i→∞.

[You may assume without proof that it is always possible to satisfy (†).]
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3. Consider the norm-constrained quadratic optimisation problem

(†) min q(x) ≡ c− bTx+ 1
2
xTGx subject to ‖x‖ ≤ Δ,

where q : Rn 7→ R with c ∈ R, b is a non-zero vector in Rn, G is an n× n symmetric matrix,
and Δ > 0. You are reminded that x? solves (†) if and only if ∃μ? ≥ 0 such that

• [G+ μ?I]x? = b with ‖x?‖ ≤ Δ,

• the complementarity condition μ? [‖x?‖ −Δ] = 0 holds,

• G+ μ?I is positive semi-definite.

If G has eigenvalues and corresponding orthonormal eigenvectors

λ1 ≥ λ2 ≥ ∙ ∙ ∙ ≥ λn−1 ≥ λn and u1,u2, . . . ,un−1,un,

with

b ≡
n∑

j=1

βjuj,

explain why ‖x(μ)‖, where
x(μ) ≡ [G+ μI]−1 b,

is strictly monotonically decreasing for μ > −λn and why limμ→∞‖x(μ)‖ = 0.

(a) If λn > 0, draw a graph of ‖x(μ)‖ for μ ≥ 0 and describe how (†) has exactly one
solution in either of the cases

• ‖x(0)‖ < Δ • ‖x(0)‖ ≥ Δ.

(b) If λn ≤ 0 with βn 6= 0, draw a graph of ‖x(μ)‖ for μ > −λn and explain carefully why
(†) has exactly one solution.

(c) If λn ≤ 0 and λn−1 > λn with βn = 0, draw a graph of ‖x(μ)‖ for μ > −λn and explain
carefully why (†) may have one solution or may have two solutions.
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4. Define carefully what is meant by both a global and a local minimum for the linear equality

constrained problem

(†)
min f(x)

subject to Ax = d;

where f : Rn 7→ R is a smooth function, A ∈ Rm×n and d ∈ Rm. Assuming the orthogonal
subspace decomposition

Rn = R⊕N ,

where R ⊆ Rn denotes the range-space of AT and N ⊆ Rn denotes the null-space of A,
prove by contradiction that a necessary condition for x? ∈ Rn to be a local minimum for (†)
is that ∃λ? ∈ Rm such that

∇f(x?) + ATλ? = 0.

Hence write down a system of m + n equations that the unknowns x? and λ? must satisfy,

in order for x? to be a local minimum for (†). If, in addition, f is a convex function, prove
that a solution of this system implies that x? is a global minimum for (†). [You may use any
property of convex functions without proof.]

For the particular quadratic problem m = 2, n = 3, f(x) ≡ x21 + x
2
2 + x

2
3,

A =

(
1 2 −1
1 −1 1

)

and d =

(
4

−2

)

,

set up and solve the 5× 5 system of linear equations for x? and λ?.
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5. Consider the nonlinear inequality constrained problem

(†)
min f(x)

subject to c(x) ≥ 0;

where f : Rn 7→ R and c : Rn 7→ Rm are smooth functions.

(a) Define what is meant by a local minimum for (†).

(b) State carefully the KKT conditions, which are necessary for x? ∈ Rn to be a local
minimum of (†); using g(x?) ≡∇f(x?) ∈ Rn to denote the gradient vector of f at x?

and gi(x
?) ≡∇ci(x?) ∈ Rn to denote the gradient vector of the ith component of c at

x?.

(c) For the particular problem

f(x) ≡ x1 + x2 and c(x) ≡

(
2− x21 − x

2
2

x2

)

with n = 2 and m = 2:

(i) write down the KKT conditions and find all the solutions,

(ii) display the feasible set on a graph and use the objective function to determine the

constrained minimum.
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