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1. (a) Give the definition of x? ∈ Rn being a local minimum of f : Rn 7→ R and, if f is
smooth, prove by contradiction that the gradient condition

(†) ∇f(x?) ≡ g(x?) = 0

is necessary for x? to satisfy this definition. What is the definition of x? being a strict

local minimum of f?

(b) State the definition of a symmetric matrix G ∈ Rn×n being

• positive definite • positive semi-definite.

By using an orthonormal set of eigenvectors for G, prove that these definitions are

equivalent to

• all eigenvalues of G are strictly positive

• all eigenvalues of G are non-negative

respectively.

(c) If x? ∈ Rn is a local minimum of a smooth f : Rn 7→ R, prove by contradiction that,
in addition to (†), the Hessian matrix

∇2f(x?) ≡ H(x?)

must be positive semi-definite. If H(x?) is actually positive definite, prove that x? is

a strict local minimum.

(d) By calculation, show that the gradient of f : R2 7→ R defined by

f(x1, x2) ≡ 100
(
x2 − x

2
1

)2
+ (1− x1)

2

is zero at precisely one point and that the Hessian matrix is positive definite there.
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2. Let f : Rn 7→ R be a smooth function and consider Newton’s method to minimise f .

(a) Explain carefully the underlying strategy for obtaining the next iterate xi+1 from the

current iterate xi. [It is not enough just to state the formula!] What condition on

the Hessian matrix ∇2f(xi) ≡ H(xi) needs to hold in order for this strategy to make
sense?

(b) Suppose x? ∈ Rn satisfies ∇f(x?) ≡ g(x?) = 0 with H(x?) positive definite, and H
also satisfies the Lipschitz condition

‖H(x)− H(y)‖ ≤ γ(d) ‖x− y‖ ∀x,y ∈ B(x?, d)

for all d > 0, where B(x?, d) ≡ {x ∈ Rn : ‖x− x?‖ ≤ d}. Carry out the following
steps to deduce that the Newton iterates converge quadratically to x? from any

starting value x0 close enough to satisfy

‖H(x?)−1‖ d0 γ(d0) < 2
3
,

where d0 ≡ ‖x0 − x?‖.

(i) Assuming the result that, if A,B are symmetric n×nmatrices with A non-singular,
then

‖A− B‖ <
1

‖A−1‖

implies that B is also non-singular with

‖B−1‖ ≤
‖A−1‖

1− ‖A−1‖‖A− B‖
;

prove that H(x) is non-singular, and hence positive definite, for x ∈ B(x?, d0)
with

‖H(x)−1‖ < 3 ‖H(x?)−1‖.

(ii) Use the Newton formula for xi+1 and the integral mean value theorem to prove

that, if xi ∈ B(x?, d0), then

(†) ‖xi+1 − x
?‖ < 3

2
‖H(x?)−1‖ γ(d0) ‖xi − x?‖2.

(iii) Use (†) to prove by induction that the Newton iterates remain in B(x?, d0).

(iv) Use (†) to prove that the Newton iterates converge to x?, and hence converge
quadratically.
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3. (a) Explain carefully one step of the Newton + trust region algorithm for the unconstrained

optimisation problem

min f(x),

where f : Rn 7→ R is a smooth function, which may be applied even when the
current Hessian matrix fails to be positive definite. Your explanation should include

the following points.

(i) What are the algorithm parameters?

(ii) What is the input data at the beginning of the step, and what is the output data

ready for the next step?

(iii) What is the constrained quadratic optimisation problem that provides a tentative

increment? [You do not have to describe how to solve constrained quadratic

optimisation problems.]

(iv) How does the algorithm decide whether to accept or reject the tentative

increment, and what strategy is followed in each case?

(b) Consider the constrained quadratic optimisation problem

min q(x) ≡ c− bTx+ 1
2
xTGx subject to ‖x‖ ≤ Δ,

where q : Rn 7→ R with c ∈ R, b ∈ Rn, G an n × n symmetric matrix, and Δ > 0.
Prove that x? solves this problem if and only if ∃μ? ≥ 0 such that

• [G+ μ?I]x? = b,

• the complementarity condition μ? [‖x?‖ −Δ] = 0 holds,

• G+ μ?I is positive semi-definite.

In addition, if G + μ?I is positive definite, show that x? is the unique solution of the

constrained quadratic optimisation problem.

[You are reminded of the following result, which you may use without proof.

If f : Rn 7→ R and c : Rn 7→ R are smooth functions and y? ∈ Rn is a local
minimum for the inequality constrained problem

min f(x)

subject to c(x) ≥ 0,

then ∃λ? ≥ 0 such that

g(y?) = λ?gc(y
?), λ?c(y?) = 0

gc(y
?)Tx = 0 ⇒ xT [H(y?)− λ?Hc(y

?)]x ≥ 0,

where g(x) ≡ ∇f(x), H(x) ≡ ∇2f(x), gc(x) ≡ ∇c(x) and Hc(x) ≡
∇2c(x).]
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4. Define carefully what is meant by both a global and a local minimum for the linear equality

constrained quadratic problem

(†)
min q(x) ≡ c− bTx+ 1

2
xTGx

subject to Ax = d;

where q : Rn 7→ R is constructed from c ∈ R, b ∈ Rn and a symmetric n × n matrix G,
and the constraint depends on A ∈ Rm×n and d ∈ Rm. Assuming the orthogonal subspace
decomposition

Rn = R⊕N ,

where R ⊆ Rn denotes the range-space of AT and N ⊆ Rn denotes the null-space of A,
prove by contradiction that a necessary condition for x? ∈ Rn to be a local minimum for
(†) is that

Gx? − b ∈ R.

Explain why this implies that, if x? ∈ Rn is a local minimum for (†), then ∃λ? ∈ Rm such
that (x?,λ?) ∈ Rn × Rm is a solution of the system

(§)

(
G AT

A 0

)(
x

λ

)

=

(
b

d

)

.

Prove that it is impossible for (†) to have a local minimum if

(‡) z ∈ N ⇒ zTGz ≥ 0

does not hold; on the other hand, if (‡) does hold, show that any solution (x?,λ?) of (§)
means that x? is a global minimum for (†).

For the particular quadratic problem

min
n∑

i=1

ix2i subject to
n∑

i=1

xi = K,

where K is a given positive constant, set up and solve (§), an (n + 1) × (n + 1) system
for x? ∈ Rn and λ? ∈ R. Verify that (‡) holds for this particular problem and, for n = 3
and K = 10, numerically evaluate the global constrained minimum.
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5. Define what is meant by a global minimum for the nonlinear inequality constrained problem

(†)
min f(x)

subject to c(x) ≥ 0;

where f : Rn 7→ R and c : Rn 7→ Rm are smooth functions. What is a strict global
minimum of (†), and explain why there can be at most one?

x? ∈ Rn is said to satisfy the KKT conditions if ∃λ? ∈ Rm such that

g(x?) =
m∑

i=1

λ?igi(x
?),

λ? ≥ 0, c(x?) ≥ 0,

λ?i ci(x
?) = 0 i = 1, . . . ,m.

Here g(x?) ≡∇f(x?) ∈ Rn is the gradient vector of f at x? and gi(x
?) ≡∇ci(x?) ∈ Rn

is the gradient vector of the ith component of c at x?.

(a) Using the gradient of f , state the definitions of f being a convex or strictly convex

function.

(b) State the definition of c being a concave function in two equivalent ways; one using a

linear interpolating polynomial and the other using the m× n matrix whose rows are
the gradients of the components of c. [You do not have to prove the equivalence.]

(c) Prove that if c is a concave function then the feasible set

S ≡
{
x ∈ Rn : c(x) ≥ 0

}

is convex.

(d) If f is convex and c is concave, prove that x? ∈ Rn satisfying the KKT conditions is
a sufficient condition for x? to be a global minimum of (†).

(e) If f is strictly convex and c is concave, prove that x? ∈ Rn satisfying the KKT
conditions is a sufficient condition for x? to be the strict global minimum of (†).
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