Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)
May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3M6/M4M6

Advanced techniques for solving integral and differential equations

Date: Wednesday, 31st May 2006 Time: 2 pm - 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. The function $y(x)$ satisfies the nonlinear second-order differential equation

$$
\epsilon y^{\prime \prime}-2 y^{\prime}+e^{y}=0, \quad 0 \leq x \leq 1, \quad 0<\epsilon \ll 1,
$$

with boundary conditions $y(0)=0$ and $y(1)=0$.
(i) Carefully describe the scaling (i.e. set $x=x_{0}+\epsilon^{\alpha} X$ and find α). By analysing the lowest-order inner solution, locate the boundary layer (i.e. find x_{0}). Write down the inner equation. Decide which boundary condition must be satisfied by the outer solution.
(ii) Find the leading (lowest-order) outer and inner approximations to $y(x)$ and match them. Sketch the solution, indicating the inner and outer regions.
2. The function $y(x)$ satisfies the linear second-order differential equation

$$
\epsilon y^{\prime \prime}+y^{\prime}+x y=0, \quad 0 \leq x \leq 1, \quad 0<\epsilon \ll 1,
$$

with boundary conditions $y(0)=0$ and $y(1)=1$.
Determine the scaling and the inner equation.
Obtain the two-term outer expansion and the two-term inner expansion of the function $y(x)$ and match the two expansions.
3. The function $y(x)$ satisfies the integral equation

$$
y(x)=\frac{1}{2} \int_{0}^{\infty} e^{-|x-t|} y(t) d t+e^{-2 x}, \quad 0 \leq x<\infty
$$

and the boundary condition $y(0)=3 / 2$.
Find $y(x)$ using the Wiener-Hopf method. Sketch $y(x)$ and find the limiting value $k=$ $\lim _{x \rightarrow \infty} y(x)$.
[The standard result

$$
\int_{0}^{\infty} e^{-\alpha x} e^{i s x} d x=\frac{i}{s+i \alpha}, \quad \operatorname{Im} s>-\alpha
$$

for real α, may be used without proof.]
4. Solve the integral equation

$$
\frac{1}{\pi} \int_{-1}^{1} \ln |t-x| f(t) d t=-\tan ^{-1} x, \quad-1 \leq x \leq 1
$$

[The inversion formula

$$
f(x)=-\frac{1}{\pi \sqrt{1-x^{2}}} \mathrm{P} \int_{-1}^{1} d t \frac{\sqrt{1-t^{2}}}{t-x} g(t)+\frac{A}{\sqrt{1-x^{2}}}
$$

for the singular integral equation

$$
\frac{1}{\pi} \mathrm{P} \int_{-1}^{1} \frac{d t}{t-x} f(t)=g(x)
$$

may be quoted without proof; here P indicates the principal value integral and A is an arbitrary constant.]
5. The generating function for Chebyshev polynomials of the first kind $T_{n}(x),-1<x<1$, is

$$
G(x, y)=\frac{1-x y}{1-2 x y+y^{2}}=\sum_{n=0}^{\infty} T_{n}(x) y^{n} .
$$

By differentiation, show that the generating function satisfies the following partial differential equation

$$
\left(1-x^{2}\right) \frac{\partial^{2} G}{\partial x^{2}}-x \frac{\partial G}{\partial x}+y \frac{\partial}{\partial y}\left(y \frac{\partial G}{\partial y}\right)=0
$$

From this, obtain the Chebyshev equation, i.e. the second-order differential equation satisfied by $T_{n}(x)$. Bring this equation into the standard form:

$$
\frac{d}{d x}\left[p(x) \frac{d T_{n}}{d x}\right]+q(x) \frac{d T_{n}}{d x}+n^{2} T_{n}=0
$$

Hence find the functions $p(x)$ and $q(x)$ and the weight function $w(x)$.
Write down the Rodrigues formula and the orthogonality relations. By using the Rodrigues formula, or otherwise, obtain $T_{0}(x), T_{1}(x)$, and $T_{2}(x)$ normalised in such a way that the coefficient of x^{n} in T_{n} is unity.

