1. Consider the initial-value problem

$$x' = f(x, t), \quad x(0) = 0,$$

where x is an n-dimensional vector, and f(x,t) an n-dimensional vector function defined for $x \in D$: $|x| \le \beta$ and $t \in I$: $|t| \le \alpha$.

- (a) (i) State the Cauchy-Peano Theorem concerning the existence of a solution to the initial-value problem.
 - (ii) Suppose that f(x,t) is a two-dimensional vector function

$$f(x,t) = \left(\frac{\sqrt{1-t^2}}{1+x_2^2}, (\cos t)x_1^2\right)^T$$

where $|x| \leq \beta$ and $|t| \leq 1$. In what range of t does a solution to the initial value problem exist according to the Cauchy-Peano theorem?

- (b) Suppose that f(x,t) is a continuous vector function of x and t, and $\frac{\partial f}{\partial x}$ exists and $|\frac{\partial f}{\partial x}| \le L$ for $|x| \le \beta$ and $|t| \le \alpha$.
 - (i) Prove that f(x,t) satisfies a Lipschitz condition.
 - (ii) Use the above result, or otherwise, to show that the two-dimensional vector function

$$f(x,t) = \left((x_1^2 + x_2^2)^{\gamma}, x_1 x_2\right)^T$$

where $|x| \leq \beta$ and $\gamma \geq \frac{1}{2}$ is a parameter, satisfies a Lipschitz condition.

If $0<\gamma<\frac{1}{2}$, would f(x,t) satisfy a Lipschitz condition? Why?

- (c) (i) For the f(x,t) given in (b), state the range of γ for which there exists a unique solution to the initial-value problem. Write down this solution.
 - (ii) State a range of γ for which there exist multiple solutions. Construct two different solutions.

2. (a) Suppose that X(t) is a fundamental matrix of the linear differential system

$$x'(t) = A(t) x(t) \tag{1}$$

where A(t) is an $n \times n$ matrix of period T > 0, i.e. A(t+T) = A(t) for any t.

(i) Show that X(t+T) is also a fundamental matrix, and is related to X(t) via X(t+T)=X(t)B, where B is a constant matrix. Show that the determinant of B, $\det B$, is given by

$$\det B = \exp \left\{ \int_0^T \operatorname{tr} A(s) \, ds \right\}.$$

You may use, without proof, the identity

$$\det \left(X(t)
ight) = \det \left(X(t_0)
ight) \exp \left\{ \int_{t_0}^t \operatorname{tr} A(s) \, d \, s \right\} \quad \text{valid for any } t \text{ and } t_0.
ight]$$

- (ii) Define the Floquet multipliers and Floquet exponents.
- (iii) Deduce that there exists at least one unbounded solution to (1) if

$$\int_0^T \operatorname{tr} A(s) \, ds > 0.$$

(b) Consider now the differential equation

$$u''(t) + \epsilon \Big(1 + \nu \sin 2t\Big)u'(t) + u(t) = 0,$$

where $\epsilon > 0$, ν are constants. Set $u = e^{\mu t} q(t)$, where μ is a constant and q(t) is a periodic function, and then expand as follows for small values of ϵ :

$$q(t) = q_0(t) + \epsilon q_1(t) + O(\epsilon^2),$$

$$\mu = \epsilon \mu_1 + O(\epsilon^2),$$

- (i) Calculate $q_0(t)$.
- (ii) Derive the equation satisfied by $q_1(t)$, and determine a relation between μ_1 and ν so that $q_1(t)$ is periodic. Deduce that there is an unbounded solution if $|\nu| > 2$.

[To speed up your calculation, you may use the following identities:

$$\sin\alpha\sin\beta = -\frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)];$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)].$$

3. (a) Consider the linear system

$$\left(\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right) = A \left(\begin{array}{c} x \\ y \end{array}\right),$$

where A is a 2×2 real constant matrix. Show that if trace(A) = 0 then the form

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

is exact and can be solved analytically. Give the function F(x,y) whose level curves are trajectories in the (x,y)-plane.

Hint: Recall that a differential form of the form dF = P(u,v)du + Q(u,v)dv is exact when $\frac{\partial P}{\partial v} = \frac{\partial Q}{\partial u}$.

(b) Let now A be the 2×2 matrix

$$A_{\alpha} = \left(\begin{array}{cc} 0 & 1+\alpha \\ -1 & \alpha \end{array}\right),\,$$

where α is a real parameter.

- (i) Show that the origin is always a critical point of the system $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A_{\alpha} \begin{pmatrix} x \\ y \end{pmatrix}$.
- (ii) Explain how the choice of α affects the trajectories in phase plane and give the values of α (if any) where the behaviour change completely. Noting that $\ell: \det(A_{\alpha}) = \operatorname{trace}(A_{\alpha}) + 1$ defines a line in the (tr, det)-plane, draw a bifurcation diagram in the (tr, det)-plane illustrating how the trajectories change character as α increases from $-\infty$ to ∞ .
- (iii) In the case $\alpha=0$ use the result of Part (a) to determine the curves that give the trajectories in phase plane. Sketch also typical trajectories for $\alpha=-2,-1$.

- 4. (a) For the plane autonomous system $\dot{x} = f(x)$, where f and x are two-dimensional vectors, prove that if div f is strictly of one sign in a bounded simply connected region R, then there is no periodic solution in R.
 - (b) Consider the non-linear system

$$\dot{x}_1 = f_1(x_1, x_2) \equiv x_1(1 - x_1^2 - x_2^2 - a \exp(x_1^2)) - x_2,$$

$$\dot{x}_2 = f_2(x_1, x_2) \equiv x_1 + x_2(1 - x_1^2 - x_2^2 - a \exp(x_1^2)),$$

where $a \ge 0$ is a constant.

- (i) Use part (a) to show that if $a \ge 1$ there is no periodic solution.
- (ii) Show that in terms of the polar coordinates (r, θ) , the system can be rewritten as

$$\dot{r} = r(1 - r^2 - a \exp(r^2 \cos^2 \theta)), \quad \dot{\theta} = 1,$$

where $x_1 + ix_2 = r(t) \exp(i\theta(t))$.

- (iii) For the case a=0, find the only limit cycle and determine its stability properties.
- (iv) For 0 < a < 1, construct an appropriate annular region and use the Poincaré-Bendixson Theorem to prove that the system has at least one limit cycle. [You may use the result: $\exp(-r^2) \ge 1 r^2$.]

- 5. (a) State the Hopf Bifurcation Theorem for a planar autonomous system depending on a real parameter μ . Explain the relevance of the *genericity condition*.
 - (b) The FitzHugh's system

$$\frac{dx}{dt} = y + x - \frac{1}{3}x^3 - \mu,$$

$$\frac{dy}{dt} = a - x - by,$$

is a relatively simple model of nerve impulses. Here x is an excitability variable, y is a recovery variable, μ is an input which we here assume constant, and a, b are positive parameters, with b < 1.

(i) Give the Jacobian of the system at a steady state (x^*, y^*) and show that the steady state is stable if

$$b - (1 - x^{2}) > 0$$
, $1 - b(1 - x^{2}) > 0$.

- (ii) Show that the steady state of the model is unstable if x^* falls in the range $-\gamma < x^* < \gamma$, where $\gamma = \sqrt{1-b}$.
- (iii) Show that if $\mu = \mu_c$, where

$$\mu_{c} = \frac{a - \gamma}{b + \gamma - \gamma^{3}/3}$$

there is a steady state $P=(\gamma,\frac{a-\gamma}{b})$, and that the Jacobian there has a pair of purely imaginary eigenvalues.

(iv) Show that if μ increases from μ_c , the eigenvalues at the steady state move into the right half plane, destabilising the steady state. Conclude that at $\mu = \mu_c$ a Hopf bifurcation takes place.