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1. Consider the initial-value problem

x′ = f(x, t), x(0) = 0, (1)

where x is an n-dimensional vector, and f is an n-dimensional vector function defined for

t ∈ I : |t| ≤ α and x ∈ D : |x| ≤ β.

(a) Define the Lipschitz condition satisfied by f(x, t), and state its relevance to the

uniqueness of the solution to the initial-value problem.

Show that the two-dimensional vector function

f(x, t) =
(
sin t+ x22 , e

−t2 x1x2

)>
,

where |x| ≤ β and t ∈ (−∞,+∞), satisfies a Lipschitz condition. Give a value for the
Lipschitz constant L.

In what range of t is the solution to the initial-value problem expected to exist according

to Cauchy-Peano theorem?

(b) Suppose that f(x, t) is a scalar function defined as f(x, t) = t|x|γ with |x| ≤ β and
|t| ≤ α. For what value of γ does there exist a unique solution to the initial-value
problem?

For what values of γ do there exist more-than-one solutions? Construct two different

solutions.

(c) Suppose that x(t) is a solution to (1), and y(t) satisfies

y′ = f(y, t) + μg(y, t), y(0) = 0,

where f satisfies a Lipschitz condition with a Lipschitz constant L, and g(x, t) is a

continuous function of x and t and |g| ≤ 1 for all x and |t| ≤ α. Show that

|x(t)− y(t)| ≤ |μ|t + L
∫ t

0

∣
∣
∣(x(s)− y(s)

∣
∣
∣ ds

for 0 ≤ t ≤ α. Hence show that

|x(t)− y(t)| ≤
|μ|
L
(eLt−1) .

Comment on the implication of this result on the dependence of the solution on the

parameter.
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2. (a) For the linear differential equations

x′1(t) = (ν + cost)x1 ,

x′2(t) = (−ν + cost)x2 + x1 ,

where ν is a constant, find the fundamental matrix X(t).

Hence obtain the matrix B = X(0)−1X(2π).

Calculate the characteristic multipliers and characteristic exponents.

For what value of ν is there a periodic solution?

(b) A pendulum with a periodically varying length is described by the equation

(1 + ε cos 2t)u′′(t)− 2ε sin2t u′(t) + δu(t) = 0 ,

where ε and δ are constants.

Set u = eμt q(t), where μ is a constant and q(t) is a periodic function, and then expand

as follows for small values of ε:

q = q0(t) + εq1(t) +O(ε
2) ,

μ = εμ1 +O(ε
2) ,

δ = 1 + εδ1 +O(ε
2) .

Calculate q0(t).

Derive the equation satisfied by q1(t) and determine a relation between μ1 and δ1 so that

q1 is periodic.

Sketch the regions of instability in the (δ, ε)-plane near to δ = 1 for small ε.

Explain the concept of subharmonic parametric resonance with reference to the solution

that you have found.

[ To speed up your calculation, you may use the following identities:

cosα cos β =
1

2
[cos(α + β) + cos(α− β)] ;

sinα sin β = −
1

2
[cos(α + β)− cos(α− β)] ;

sinα cos β =
1

2
[sin(α + β) + sin(α− β)] . ]
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3. (a) Suppose that the initial-value problem

x′ = f(x) , x(t0) = x0 .

has a solution x(t) for all t ≥ t0.

Define the Liapunov stability of x(t).

Suppose that x(t) is a periodic function of t, representing a closed orbit Γ. Define the

orbital stability of Γ.

(b) Consider the nonlinear plane system

x′1(t) = x2 + γx1 + (2x
2
1 + x

2
2)x1x

2
2 ,

x′2(t) = −2x1 + γx2 − (2x21 + x
2
2)x2 + (2x

2
1 + x

2
2)x

3
2 ,






where γ is a constant.

(i) What conclusion may you draw about the nature of the steady solution (0, 0) based

on a linearised stability analysis?

(ii) For the case γ = 0, construct a Liapunov function of the form V = ax21 + x
2
2

(where a is a constant that you are expected to determine) for (x1, x2) in a suitable

neighbourhood of (0, 0).

Show that the steady solution (0, 0) is uniformly stable.

By using La Salle’s Invariance Principle, show further that (0, 0) is asymptotically

stable, and hence determine the nature of (0, 0).

(iii) For γ = 0, deduce that there exists a periodic orbit 2x21 + x
2
2 = 1, and that this

periodic orbit is unstable.

(iv) Sketch the trajectories for γ = 0 in the phase plane.
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4. (a) State the Poincaré-Bendixson Theorem for orbits in a phase plane.

(b) Consider the nonlinear system

x′1(t) = x2 + x1(1− 2a− x
2
1 − x

2
2) , (1)

x′2(t) = −x1 + x2(1− x
2
1 − x

2
2) , (2)

where a is a constant.

Show that if a > 1 there is no periodic solution.

Show that, in terms of the polar coordinates (r, θ), the system (1) and (2) can be written

as

r′ = r(1− r2 − 2a cos2θ) , θ′ = −1 + a sin 2θ,

where x1 = r cosθ, x2 = r sinθ.

For the case a = 0, find the limit cycle, and determine its stability.

For −1 < a < 1
2
, by constructing an appropriate annular region and using the Poincaré-

Bendixson Theorem, prove that the system has at least one periodic solution. [Hint:

consider 0 ≤ a < 1
2
and −1 < a < 0 separately. ]

Calculate the period of the periodic solution(s).
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5. (a) Consider a general plane system

{
x′ = f(x, y, μ),

y′ = g(x, y, μ),

where f and g are sufficiently smooth functions of x, y and μ, with μ being a real

parameter.

Define a critical point
(
x0(μ), y0(μ)

)
of the system.

Define a Hopf bifurcation point, μ0 say, of the parameter μ, explaining your definition

explicitly in terms of the relevant partial derivatives fx, fy, gx and gy .

Explain the implication of the genericity condition γ 6= 0 for the stability of (x0, y0),
where

γ ≡
d

d μ
(fx + gy) evaluated at (x, y) = (x0, y0), μ = μ0 .

Suppose that (x0, y0) is stable for μ < μ0, and γ > 0. Explain supercritical and subcritical

Hopf bifurcations by means of suitable bifurcation diagrams.

(b) The so-called Brusselator is a model for certain chemical reactions, and it consists of

equations

x′ = a− (μ+ 1)x+ x2y,

y′ = μx− x2y,

where x and y are concentrations (x, y ≥ 0), and a and μ are positive parameters.

Find the critical point (x0, y0) of the system.

Derive the condition that parameters a and μ have to satisfy for a Hopf bifurcation to

occur.

For a = 1, sketch the bifurcation diagrams of y0 against μ.

Suppose that the Hopf bifurcation is supercritical. Sketch the phase-plane diagrams

before and after the bifurcation, indicating any periodic orbit.
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