Imperial College London

UNIVERSITY OF LONDON
BSc and MSci EXAMINATIONS (MATHEMATICS)
May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M3M5/M4M5

Advanced Ordinary Differential Equations

Date: Thursday, 25th May 2006 Time: 2 pm - 4 pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Consider the initial-value problem

$$
\begin{equation*}
x^{\prime}=f(x, t), \quad x(0)=0, \tag{1}
\end{equation*}
$$

where x is an n-dimensional vector, and f is an n-dimensional vector function defined for $t \in I:|t| \leq \alpha$ and $x \in D:|x| \leq \beta$.
(a) Define the Lipschitz condition satisfied by $f(x, t)$, and state its relevance to the uniqueness of the solution to the initial-value problem.

Show that the two-dimensional vector function

$$
f(x, t)=\left(\sin t+x_{2}^{2}, \mathrm{e}^{-t^{2}} x_{1} x_{2}\right)^{\top}
$$

where $|x| \leq \beta$ and $t \in(-\infty,+\infty)$, satisfies a Lipschitz condition. Give a value for the Lipschitz constant L.
In what range of t is the solution to the initial-value problem expected to exist according to Cauchy-Peano theorem?
(b) Suppose that $f(x, t)$ is a scalar function defined as $f(x, t)=t|x|^{\gamma}$ with $|x| \leq \beta$ and $|t| \leq \alpha$. For what value of γ does there exist a unique solution to the initial-value problem?
For what values of γ do there exist more-than-one solutions? Construct two different solutions.
(c) Suppose that $x(t)$ is a solution to (1), and $y(t)$ satisfies

$$
y^{\prime}=f(y, t)+\mu g(y, t), \quad y(0)=0
$$

where f satisfies a Lipschitz condition with a Lipschitz constant L, and $g(x, t)$ is a continuous function of x and t and $|g| \leq 1$ for all x and $|t| \leq \alpha$. Show that

$$
|x(t)-y(t)| \leq|\mu| t+L \int_{0}^{t} \mid(x(s)-y(s) \mid d s
$$

for $0 \leq t \leq \alpha$. Hence show that

$$
|x(t)-y(t)| \leq \frac{|\mu|}{L}\left(\mathrm{e}^{L t}-1\right) .
$$

Comment on the implication of this result on the dependence of the solution on the parameter.
2. (a) For the linear differential equations

$$
\begin{aligned}
x_{1}^{\prime}(t) & =(\nu+\cos t) x_{1} \\
x_{2}^{\prime}(t) & =(-\nu+\cos t) x_{2}+x_{1}
\end{aligned}
$$

where ν is a constant, find the fundamental matrix $X(t)$.
Hence obtain the matrix $B=X(0)^{-1} X(2 \pi)$.
Calculate the characteristic multipliers and characteristic exponents.
For what value of ν is there a periodic solution?
(b) A pendulum with a periodically varying length is described by the equation

$$
(1+\epsilon \cos 2 t) u^{\prime \prime}(t)-2 \epsilon \sin 2 t u^{\prime}(t)+\delta u(t)=0
$$

where ϵ and δ are constants.
Set $u=\mathrm{e}^{\mu t} q(t)$, where μ is a constant and $q(t)$ is a periodic function, and then expand as follows for small values of ϵ :

$$
\begin{aligned}
q & =q_{0}(t)+\epsilon q_{1}(t)+O\left(\epsilon^{2}\right), \\
\mu & =\epsilon \mu_{1}+O\left(\epsilon^{2}\right), \\
\delta & =1+\epsilon \delta_{1}+O\left(\epsilon^{2}\right) .
\end{aligned}
$$

Calculate $q_{0}(t)$.
Derive the equation satisfied by $q_{1}(t)$ and determine a relation between μ_{1} and δ_{1} so that q_{1} is periodic.
Sketch the regions of instability in the (δ, ϵ)-plane near to $\delta=1$ for small ϵ.
Explain the concept of subharmonic parametric resonance with reference to the solution that you have found.
[To speed up your calculation, you may use the following identities:

$$
\begin{aligned}
\cos \alpha \cos \beta & =\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)] \\
\sin \alpha \sin \beta & =-\frac{1}{2}[\cos (\alpha+\beta)-\cos (\alpha-\beta)] \\
\sin \alpha \cos \beta & \left.=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] .\right]
\end{aligned}
$$

3. (a) Suppose that the initial-value problem

$$
x^{\prime}=f(x), \quad x\left(t_{0}\right)=x_{0} .
$$

has a solution $x(t)$ for all $t \geq t_{0}$.
Define the Liapunov stability of $x(t)$.
Suppose that $x(t)$ is a periodic function of t, representing a closed orbit Γ. Define the orbital stability of Γ.
(b) Consider the nonlinear plane system

$$
\left.\begin{array}{l}
x_{1}^{\prime}(t)=x_{2}+\gamma x_{1}+\left(2 x_{1}^{2}+x_{2}^{2}\right) x_{1} x_{2}^{2} \\
x_{2}^{\prime}(t)=-2 x_{1}+\gamma x_{2}-\left(2 x_{1}^{2}+x_{2}^{2}\right) x_{2}+\left(2 x_{1}^{2}+x_{2}^{2}\right) x_{2}^{3}
\end{array}\right\}
$$

where γ is a constant.
(i) What conclusion may you draw about the nature of the steady solution $(0,0)$ based on a linearised stability analysis?
(ii) For the case $\gamma=0$, construct a Liapunov function of the form $V=a x_{1}^{2}+x_{2}^{2}$ (where a is a constant that you are expected to determine) for $\left(x_{1}, x_{2}\right)$ in a suitable neighbourhood of $(0,0)$.
Show that the steady solution $(0,0)$ is uniformly stable.
By using La Salle's Invariance Principle, show further that $(0,0)$ is asymptotically stable, and hence determine the nature of $(0,0)$.
(iii) For $\gamma=0$, deduce that there exists a periodic orbit $2 x_{1}^{2}+x_{2}^{2}=1$, and that this periodic orbit is unstable.
(iv) Sketch the trajectories for $\gamma=0$ in the phase plane.
4. (a) State the Poincaré-Bendixson Theorem for orbits in a phase plane.
(b) Consider the nonlinear system

$$
\begin{align*}
x_{1}^{\prime}(t) & =x_{2}+x_{1}\left(1-2 a-x_{1}^{2}-x_{2}^{2}\right) \tag{1}\\
x_{2}^{\prime}(t) & =-x_{1}+x_{2}\left(1-x_{1}^{2}-x_{2}^{2}\right) \tag{2}
\end{align*}
$$

where a is a constant.
Show that if $a>1$ there is no periodic solution.
Show that, in terms of the polar coordinates (r, θ), the system (1) and (2) can be written as

$$
r^{\prime}=r\left(1-r^{2}-2 a \cos ^{2} \theta\right), \quad \theta^{\prime}=-1+a \sin 2 \theta,
$$

where $x_{1}=r \cos \theta, x_{2}=r \sin \theta$.
For the case $a=0$, find the limit cycle, and determine its stability.
For $-1<a<\frac{1}{2}$, by constructing an appropriate annular region and using the PoincaréBendixson Theorem, prove that the system has at least one periodic solution. [Hint: consider $0 \leq a<\frac{1}{2}$ and $-1<a<0$ separately.]

Calculate the period of the periodic solution(s).
5. (a) Consider a general plane system

$$
\left\{\begin{aligned}
x^{\prime} & =f(x, y, \mu), \\
y^{\prime} & =g(x, y, \mu),
\end{aligned}\right.
$$

where f and g are sufficiently smooth functions of x, y and μ, with μ being a real parameter.
Define a critical point $\left(x_{0}(\mu), y_{0}(\mu)\right)$ of the system.
Define a Hopf bifurcation point, μ_{0} say, of the parameter μ, explaining your definition explicitly in terms of the relevant partial derivatives f_{x}, f_{y}, g_{x} and g_{y}.
Explain the implication of the genericity condition $\gamma \neq 0$ for the stability of $\left(x_{0}, y_{0}\right)$, where

$$
\gamma \equiv \frac{d}{d \mu}\left(f_{x}+g_{y}\right) \text { evaluated at }(x, y)=\left(x_{0}, y_{0}\right), \quad \mu=\mu_{0}
$$

Suppose that (x_{0}, y_{0}) is stable for $\mu<\mu_{0}$, and $\gamma>0$. Explain supercritical and subcritical Hopf bifurcations by means of suitable bifurcation diagrams.
(b) The so-called Brusselator is a model for certain chemical reactions, and it consists of equations

$$
\begin{aligned}
x^{\prime} & =a-(\mu+1) x+x^{2} y \\
y^{\prime} & =\mu x-x^{2} y
\end{aligned}
$$

where x and y are concentrations ($x, y \geq 0$), and a and μ are positive parameters.
Find the critical point $\left(x_{0}, y_{0}\right)$ of the system.
Derive the condition that parameters a and μ have to satisfy for a Hopf bifurcation to occur.

For $a=1$, sketch the bifurcation diagrams of y_{0} against μ.
Suppose that the Hopf bifurcation is supercritical. Sketch the phase-plane diagrams before and after the bifurcation, indicating any periodic orbit.

